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Abstract

This paper analyzes a two-player game of strategic experimentation with three-armed

exponential bandits in continuous time. Players play bandits of identical types, with

one arm that is safe in that it generates a known payoff, whereas the likelihood of the

risky arms’ yielding a positive payoff is initially unknown. It is common knowledge

that the types of the two risky arms are perfectly negatively correlated. In contrast

to the previous literature, I show that in this model the long-run properties of equilib-

rium learning depend on the stakes at play, and that the efficient policy is incentive-

compatible if, and only if, the stakes are high enough.
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1 Introduction

When firms explore neighboring oil fields or competing research hypotheses, they have to

strike a balance between optimally using their current information on the one hand, and

investing in the production of new information on the other hand. When doing so, they

have to take into account the impact of their decisions not just on themselves, but on their

partners and competitors also; indeed, the latter may benefit from the information a firm

produces. Here, I consider a team of two researchers, who each decide whether to investigate

a given hypothesis or its negation. Once one of them has found out which hypothesis is

true, both benefit from the discovery. Thus, while the costs of experimentation have to be

borne privately, any information a researcher produces is a public good. This makes for a

situation in which a player’s experimentation decisions are strategic, in that they affect the

other player’s payoffs.

I model this trade-off as a three-armed strategic bandit problem.1 Specifically, I con-

sider two players operating three-armed exponential bandits in continuous time. One arm is

safe in that it yields a known flow payoff, whereas the other two arms are risky, i.e. they can

be either good or bad. As the risky arms are meant to symbolize two mutually incompatible

hypotheses, I assume that it is common knowledge that exactly one of them is good. Players

are playing exact carbon copies of the same bandit machine; conditional on the state of the

world, draws are iid between the players (i.e. players are playing so called replica bandits).

The bad risky arm never yields a positive payoff, whereas a good risky arm yields positive

payoffs after exponentially distributed times. As the expected payoff of a good risky arm

exceeds that of the safe arm, players will want to know which risky arm is good. As either

player’s actions, as well as the outcomes of his experimentation, are perfectly publicly ob-

servable, there is an incentive for players to free-ride on the information the other player is

providing; information is a public good.

Observability, together with a common prior, implies that the players’ beliefs agree at

all times. As only a good risky arm can ever yield a positive payoff, all the uncertainty is

resolved as soon as either player has a breakthrough on a risky arm of his and beliefs become

degenerate at the true state of the world. In the absence of such a breakthrough, players

incrementally become more pessimistic about the risky arm that is more heavily utilized.

As all the payoff-relevant strategic interaction is captured by the players’ common belief

process, I restrict players to use stationary Markov strategies with their common posterior

belief as the state variable, thus making my results directly comparable to those in the

previous strategic experimentation literature.

1For an overview of the bandit literature, see Bergemann & Välimäki (2008).
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I show that the long-run properties of equilibrium learning depend on the payoff advan-

tage of a good risky arm over the safe arm (which I shall henceforth call the stakes): Only

if the stakes exceed a certain threshold will the overall asymptotic amount of learning be at

efficient levels. This is in contrast to the previous literature: Keller, Rady, Cripps (2005)

analyze multiple players playing replica exponential bandits with two arms, one safe and

one risky. They find that there is always too little experimentation in the long run. Klein

& Rady’s (2011) setting is as in Keller, Rady, Cripps (2005), except that there are now two

players, exactly one of whose risky arms is good.2 They, by contrast, show that long-run

experimentation amounts always reach efficient levels; however, the speed of learning may

still be too low.

Players have to bear experimentation costs privately; the benefit, by contrast, is public.

There are thus obvious incentives for players to free-ride on their partner’s experimentation.

On the other hand, though, the knowledge spill-overs are about options that both players

can exploit, which one would think might conceivably make it easier to sustain efficient

experimentation. As a matter of fact, I show that free-riding incentives can be completely

overcome if, and only if, the stakes exceed a certain threshold; in this case, there exists an

equilibrium in which both the amount as well as the speed of learning are at efficient levels.

Keller, Rady, Cripps (2005), by contrast, have shown that in the game with positively corre-

lated bandits, the efficient benchmark is never sustainable in equilibrium. In Klein & Rady

(2011), however, full efficiency, regarding both the amount and the speed of experimentation,

is incentive compatible if, and only if, stakes are below a certain threshold. Furthermore,

on a more technical level, combinatorial approaches along the lines of those used in Keller,

Rady, Cripps (2005), or in Klein & Rady (2011), in order to characterize the full equilibrium

set, fail here. Instead, I rely on elementary constructive methods based on the linearity of

agents’ optimization problems. This enables me to construct a symmetric Markov perfect

equilibrium for all parameter values while forgoing a full characterization of the equilibrium

set.

My model lets agents choose themselves whether to investigate the hypothesis at hand

or its negation; Klein & Rady (2011) by contrast assign one hypothesis each to either player.

The comparison between my model and Klein & Rady (2011) should thus allow us to draw

inferences about the effect of delegating the choice of project to the researchers themselves.

It is notable that, depending on the circumstances, firms or institutions seem to pursue

quite different approaches in this respect. Subsequently to marked growth in the number

of its research laboratories and facing increasing competitive pressures, 3M, for instance,

2Klein & Rady (2011) also show that most results continue to hold in the more general case where both

players’ risky arms can be bad.
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moved to restrict scientists’ discretion over their work, which had traditionally been very

vast (see Bartlett & Mohammed, 1995). Conversely, Swiss pharmaceutical giant Novartis

entered into a multi-million five-year agreement with the Department of Microbial and Plant

Biology at Berkeley, CA, delegating project decisions to a committee being comprised of five

experts, only two of whom were Novartis employees (see Lacetera, 2008)—a scheme that can

reasonably be interpreted as a commitment device on the part of Novartis to delegate project

choice to their scientific partners in academia. A somewhat similar deal had earlier been

signed by Thousand Oaks, CA, based pharmaceutical company Amgen and MIT; Lawler

(2003) quotes MIT biologist Nancy Hopkins: “There was no attempt by either side to change

the direction of our basic research” in the aftermath of the agreement.3

Chatterjee & Evans (2004) analyze a treasure-hunting game in discrete time, where it is

common knowledge that exactly one of several projects is good. As in my model, they allow

players to switch projects at any point in time. The game ends as soon as one of the players

finds the treasure. Thus, as the winner takes all, their game also involves payoff externalities;

in my model, by contrast, externalities are purely informational in nature. Their model is

thus better-suited e.g. to the analysis of experimentation by rival firms competing for market

share; mine may be more appropriate if e.g. one wants to analyze free-riding incentives by

scientists working for the same firm or in the same lab, or different jurisdictions investigating

the impact of various treatment options for a particular disease, and the like.

This paper is part of the literature on strategic experimentation with bandits. While

bandit models have been analyzed as early as the 1950s (see e.g. Robbins, 1952, Bellman,

1956, Bradt, Johnson, Karlin, 1956), their use in economics harks back to the discrete-time

model of Rothschild (1974). Whereas the first papers analyzing strategic interaction featured

a Brownian motion model (Bolton & Harris, 1999, 2000), the exponential framework I use

was first analyzed by Presman (1990) in a single-agent setting, and has proved itself to be

more tractable (see Keller, Rady, Cripps, 2005, Keller & Rady, 2010, Klein & Rady, 2011).

In this literature, my paper is most related to Keller, Rady, Cripps (2005) and Klein & Rady

(2011). Keller, Rady, Cripps (2005) show that with positively correlated two-armed bandits

there does not exist an equilibrium in cutoff strategies,4 and that the amount, as well as the

speed, of learning are inefficiently low in equilibrium. Klein & Rady (2011) show that with

perfectly negatively correlated two-armed bandits there are equilibria in cutoff strategies;

3The optimal allocation of research projects between academia and the commercial sector is the subject

of papers by Aghion, Dewatripont, Stein (2005), as well as by Lacetera (2008), who interpret academia as

a commitment device for principals not to interfere with scientists’ discretion. The frictions at the heart of

both of these papers rely on the assumption that scientists’ preferences diverge from those of economically

oriented, profit-maximizing, firms.
4A cutoff strategy is a strategy of the form “play risky if, and only if, my belief exceeds a given cutoff.”

3



the long-run amount of experimentation is always at efficient levels, though the speed of

experimentation may be too low. However, there exists an efficient equilibrium if, and only

if, the stakes are below a certain threshold. In my model, players play replica bandits, and

both players will have access to both types of risky arm at any time.

While the afore-mentioned papers, as well as the present one, assume both actions and

outcomes to be public information, there has been one recent contribution by Bonatti &

Hörner (2011) analyzing strategic interaction under the assumption that only outcomes are

publicly observable, while actions are private information. Rosenberg, Solan, Vieille (2007),

as well as Murto & Välimäki (2011), analyze the two-armed problem of public actions and

private outcomes in discrete time, assuming action choices are irreversible. Recently, there

has also been an effort at generalization of existing results in the decision-theoretic bandit

literature. For example, Bank & Föllmer (2003), as well as Cohen & Solan (2009), analyze the

single-agent problem when the underlying process is a general Lévy process, while Camargo

(2007) investigates the effects of correlation between the arms of a two-armed bandit operated

by a single decision maker.

The present paper is also somewhat related to the Moral Hazard in teams literature, to

which Holmström (1982) provided the seminal contribution. He found that the introduction

of a principal acting as a budget breaker was apt to achieve first-best effort levels on the

part of team members. Manso (2010) embeds a three-armed bandit with two safe arms and

one risky arm, operated by a single agent, into a principal-agent model. His focus is on the

wage schemes a principal would optimally offer the agent to induce him either to choose the

risky option or the principal’s preferred safe option.

The rest of the paper is structured as follows: Section 2 introduces the model; Section

3 analyzes the utilitarian planner’s problem; Section 4 analyzes some long-run properties of

equilibrium learning; Section 5 analyzes the non-cooperative game, exhibiting a symmetric

Markov perfect equilibrium for all parameter values, and a necessary and sufficient condition

for the existence of an efficient equilibrium; Section 6 concludes. Proofs are provided in the

Appendix.

2 The Model

I consider a model of two players, each of whom operates a three-armed bandit in continuous

time. One arm is safe in that it yields a known flow payoff of s > 0; both other arms, A and

B, are risky, and it is commonly known that exactly one of these risky arms is good and

one is bad. The bad risky arm never yields any payoff. The good risky arm yields a positive
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payoff with a probability of λ dt if played over a time interval of length dt; the appertaining

expected payoff increment amounts to g dt. Players discount payoffs at the common discount

rate r > 0.

The constants r, λ, s and g are common knowledge; the only uncertainty is which of

the two risky arms is good. The common prior is that A is good with probability p0. This

belief evolves based on the history of experimentation and payoffs. These are commonly

observable and so the players continue to have a common belief (probability that arm A is

good), which we denote by pt, at time t.

At each point in time, both players receive a flow endowment of one unit of a perfectly

divisible resource. Either player’s objective is to maximize his own expected discounted

payoffs by choosing the fraction of his endowment flow that he wants to allocate to either

risky arm. Specifically, either player i chooses a stochastic process {(ki,A, ki,B)(t)}0≤t which

is measurable with respect to the information filtration that is generated by the observations

available up to time t, with (ki,A, ki,B)(t) ∈ {(a, b) ∈ [0, 1]2 : a + b ≤ 1} for all t; ki,A(t)

and ki,B(t) denote the fraction of the resource devoted by player i at time t to risky arms A

and B, respectively.5 Throughout the game, either player’s actions and payoffs are perfectly

observable to the other player. Specifically, player i seeks to maximize his total expected

discounted payoff

E

[∫ ∞

0

r e−r t [(1− ki,A(t)− ki,B(t))s+ (ki,A(t)pt + ki,B(t)(1− pt)) g] dt

]
,

where the expectation is taken with respect to the processes {pt}t∈R+ and {(ki,A, ki,B)(t)}t∈R+ .

As can immediately be seen from this objective function, there are no payoff externalities

between the players; the only channel through which the presence of the other player may

impact a given player is via his belief pt, i.e. via the information that the other player is

generating. Thus, ours is a game of purely informational externalities.

As only a good risky arm can ever yield a lump sum, breakthroughs are fully revealing.

Thus, if there is a lump sum on risky arm A (B) at time τ , then pt = 1 (pt = 0) at all t > τ .

If there has not been a breakthrough by time τ , Bayes’ Rule yields

pτ =
p0e

−λ
∫ τ
0 KA,t dt

p0e
−λ

∫ τ
0 KA,t dt + (1− p0)e

−λ
∫ τ
0 KB,t dt

,

5Here, putting a fraction of the available resources on a risky project means that the probability of getting

a lump-sum reward is reduced at any moment of time, but the size of the reward does not change. It can

also be viewed as an approximation for a situation in which only one arm can be pulled at any moment but

a policy may change arbitrarily quickly between the arms, spending fraction ki,A (ki,B) of the time on arm

A (B), for instance.
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where KA,t := k1,A(t) + k2,A(t) and KB,t := k1,B(t) + k2,B(t). Thus, conditional on no

breakthrough having occurred, the process {pt}t∈R+ will evolve according to the law of motion

ṗt = −(KA,t −KB,t)λpt(1− pt)

almost everywhere.

As all payoff-relevant strategic interaction is captured by the players’ common posterior

beliefs {pt}t∈R+ , it seems quite natural to focus on Markov perfect equilibria with the players’

common posterior belief pt as the state variable. As is well known, this restriction is without

loss of generality in the planner’s problem, which is studied in Section 3. A Markov strategy

for player i is any piecewise continuous function (ki,A, ki,B) : [0, 1] → {(a, b) ∈ [0, 1]2 : a+b ≤
1}, pt 7→ (ki,A, ki,B)(pt), meaning that it is continuous at all but a finite number of points.

Following the approach in Klein & Rady (2011), I shall call admissible those strategies for

which there exists a solution to the corresponding law of motion of beliefs that coincides

with the limit of the unique discrete-time solution. This in effect boils down to ruling out

those strategy pairs for which there either is no solution in continuous time, or for which

the solution is different from the discrete-time limit. Given an admissible strategy pair

((k1,A, k1,B)(pt), (k2,A, k2,B)(pt)), the players’ belief is given by

pτ =
p0e

−λ
∫ τ
0 KA(pt) dt

p0e
−λ

∫ τ
0 KA(pt) dt + (1− p0)e

−λ
∫ τ
0 KB(pt) dt

,

if there has not been a breakthrough by time τ , with KA(pt) := k1,A(pt) + k2,A(pt) and

KB(pt) := k1,B(pt) + k2,B(pt).

All that matters for the admissibility of a given strategy pair is the behavior of the

function ∆(p) := sgn{KB(p)−KA(p)} at those beliefs p‡ where a change in sign occurs, i.e.

where it is not the case that limp↑p‡ ∆(p) = ∆(p‡) = limp↓p‡ ∆(p). Given my definition of

strategies, both one-sided limits will exist. An example of a change in sign corresponding to

a non-admissible pair of strategies is given by (limp↑p‡ ∆(p),∆(p‡), limp↓p‡ ∆(p)) = (0, 1, 0),

as for p0 = p‡, there does not exist a time path of beliefs consistent with Bayes’ rule. By

contrast, the change in sign (limp↑p‡ ∆(p),∆(p‡), limp↓p‡ ∆(p)) = (−1, 1, 0) with p0 = p‡ does

admit of a unique time path {pt}0≤t consistent with Bayes’ rule. Indeed, there exists an

ϵ > 0 such that this path entails pt < p0 for all t ∈ (0, ϵ); in the discrete-time limit, however,

the belief would freeze one grid step above p0 in the second period. Hence, my definition of

admissibility of strategies also rules out changes in sign of the type (−1, 1, 0).

By proceeding as in Klein & Rady (2011), one can show that admissibility has to be

defined for pairs of strategies, i.e. it is impossible to define a player’s set of admissible

strategies without reference to his opponent’s action. Now it can be shown that a pair of
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strategies is admissible if, and only if, it either exhibits no change in sign, or only changes

in sign (limp↑p‡ ∆(p),∆(p‡), limp↓p‡ ∆(p)) of the following types: (1, 0, 1), (0, 0, 1), (−1, 0, 1),

(−1, 0, 0), (−1, 0,−1), (−1, 1, 1), (−1,−1, 1), (1, 0, 0), (0, 1, 1), (0, 0,−1), (−1,−1, 0), (1, 0,−1).

Each admissible strategy pair (k1, k2) = ((k1,A, k1,B), (k2,A, k2,B)) induces a pair of payoff

functions (u1, u2) with ui given by

ui(p|k1, k2) =

E

[∫ ∞

0

re−rt
{
(ki,A(pt)pt + ki,B(pt)(1− pt))g + [1− ki,A(pt)− ki,B(pt)]s

}
dt

∣∣∣∣ p0 = p

]
for each i ∈ {1, 2}. For strategy pairs that are not admissible, I set u1 = u2 = −∞.

In the subsequent analysis, it will prove useful to make case distinctions based on the

stakes at play, as measured by the ratio of the expected payoff of a good risky arm over

that of a safe arm (g
s
), the players’ impatience (as measured by the discount rate r), and the

Poisson arrival rate of a good risky arm λ, which can be interpreted as the players’ innate

ability at finding out the truth: I say that the stakes are high if g
s
≥ 4(r+λ)

2r+3λ
; stakes are

intermediate if 2r+λ
r+λ

< g
s
< 4(r+λ)

2r+3λ
; stakes are low if g

s
≤ 2r+λ

r+λ
; they are very low if g

s
< 2(r+λ)

r+2λ
.

3 The Planner’s Problem

First, we investigate a benevolent utilitarian planner’s solution to the two-player problem at

hand. As the planner does not care about the distribution of surplus, and both players are

equally apt at finding out the truth, all that matters to him is the sum of resources devoted

to either type of risky arm, KA(pt) and KB(pt), respectively. The law of motion for the state

variable is now given by

ṗt = −(KA(pt)−KB(pt))λpt(1− pt), for a.a. t.

Straightforward computations show that the planner’s Bellman equation is given by6

u(p) = s+ max
{(KA,KB)∈[0,2]2:KA+KB≤2}

{
KA

[
BA(p, u)−

cA(p)

2

]
+KB

[
BB(p, u)−

cB(p)

2

]}
,

where cA(p) := s − pg and cB(p) := s − (1 − p)g measure the myopic opportunity costs

of playing risky arm A (risky arm B) rather than the safe arm. By contrast, BA(p, u) :=

6By standard arguments, if a continuously differentiable function solves the Bellman equation, it is the

value function.
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λ
r
p[g − u(p)− (1− p)u′(p)] and BB(p, u) :=

λ
r
(1− p)[g − u(p) + pu′(p)] measure the value of

information gleaned from playing risky arm A (or risky arm B, respectively).7

As the Bellman equation is linear in the planner’s choice variables, it is without loss of

generality for me to restrict attention to corner solutions, for which it is straightforward to

derive closed-form solutions for the value function:

If KA = KB = 0 is optimal, u(p) = s.

If KA = 2 and KB = 0 is optimal, the Bellman equation is tantamount to the following

ODE:

2λp(1− p)u′(p) + (2λp+ r)u(p) = (2λ+ r)pg,

which is solved by

u(p) = pg + C(1− p)Ω(p)
r
2λ ,

where C is some constant of integration and Ω(p) := 1−p
p

is the odds ratio.

If KA = 0 and KB = 2 is optimal, the Bellman equation amounts to the following ODE:

−2λ(1− p)pu′(p) + (2λ(1− p) + r)u(p) = (1− p)(r + 2λ)g,

which is solved by

u(p) = (1− p)g + CpΩ(p)−
r
2λ .

If (2, 0) and (0, 2), and therefore also (1, 1), are optimal, the planner’s value satisfies

u(p) =
r + 2λ

2(r + λ)
g =: u11.

The optimal policy depends on whether the stakes at play, as measured by the ratio
g
s
, exceed the threshold of 2(r+λ)

r+2λ
or not. Note that g

s
≤ 2(r+λ)

r+2λ
if and only if p∗2 ≥ 1

2
, where

p∗2 :=
rs

(r+2λ)(g−s)+rs
.

Proposition 3.1 (Planner’s Solution for Very Low Stakes) If g
s
< 2(r+λ)

r+2λ
, the plan-

ner will play the same arm on both bandits at all beliefs. Specifically, he will play arm A on

]p∗2, 1], arm B on [0, 1 − p∗2[, and safe on [1 − p∗2, p
∗
2]. The corresponding payoff function is

given by

u(p) =


g
[
1− p+

2λp∗2
2λp∗2+r

p (Ω(p)Ω(p∗2))
− r

2λ

]
if p ≤ 1− p∗2,

s if 1− p∗2 ≤ p ≤ p∗2,

g

[
p+

2λp∗2
2λp∗2+r

(1− p)
(

Ω(p)
Ω(p∗2)

) r
2λ

]
if p ≥ p∗2.

7By the standard principle of smooth pasting, the planner’s payoff function from playing an optimal

policy is once continuously differentiable.
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This solution continues to be optimal if g
s
= 2(r+λ)

r+2λ
.

The result is illustrated in figure 1. Note that there is no option value to the initially

less promising risky arm, since the planner will never make use of it.

s
0

g

1−p∗2 1
2

p∗2 1

Figure 1: The planner’s value function for g
s
< 2(r+λ)

r+2λ
.

As is easily verified, the optimal solution implies incomplete learning. Indeed, let us

suppose that it is risky arm A that is good. Then, if the initial prior p0 is in [0, 1− p∗2[, we

have that limt→∞ pt = 1 − p∗2 with probability 1. If p0 ∈ [1 − p∗2, p
∗
2], then pt = p0 for all

t, since the planner will always play safe. If p0 ∈ ]p∗2, 1], it is straightforward to show that

the belief will converge to p∗2 with probability Ω(p0)
Ω(p∗2)

, while the truth will be found out (i.e.

the belief will jump to 1) with the counter-probability. Hence, there is always a positive

probability that the true state of the world will not be found out, i.e. learning is incomplete.

If g
s
> 2(r+λ)

r+2λ
, which is the case if and only if u11 > s, the planner will never avail himself

of the option to play safe; his solution will ensure that learning be complete, i.e. that the

truth will eventually be found out with probability 1. Specifically, we have the following

proposition:

Proposition 3.2 (Planner’s Solution for Stakes that Are Not Very Low) If g
s
> 2(r+λ)

r+2λ
,

the planner will play the same arm on both bandits at almost all beliefs. Specifically, he will

play arm A on ]1
2
, 1] and arm B on [0, 1

2
[. At p = 1

2
, he will split his resources equally between

the risky arms. The corresponding payoff function is given by

u(p) =

{
g
[
1− p+ λ

r+λ
pΩ(p)−

r
2λ

]
if p ≤ 1

2
,

g
[
p+ λ

λ+r
(1− p)Ω(p)

r
2λ

]
if p ≥ 1

2
.
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This solution continues to be optimal if g
s
= 2(r+λ)

r+2λ
.

The solution is quite intuitive: As the planner does not care which of the risky arms is

good, the solution is symmetric around p = 1
2
. Furthermore, it is straightforward to verify

that as g
s
≥ 2(r+λ)

r+2λ
, playing risky always dominates the safe arm as u11 ≥ s. However, on

account of the linear structure in the Bellman equation, it is always the case that either

(2, 0) or (0, 2) dominates (1, 1). Therefore, the only candidate for a solution has the planner

switch at p = 1
2
. At the switch point p = 1

2
itself, the planner’s actions are pinned down by

the need to ensure a well-defined law of motion of the state variable. Thus, there is now an

option value to the initially less promising risky project, as the planner will make use of it

with strictly positive probability, no matter what his initial belief p0 ∈ ]0, 1[ may be. The

result is illustrated in figure 2.

s

u11

0

g

1
2

1

Figure 2: The planner’s value function for g
s
> 2(r+λ)

r+2λ
.

At the knife-edge case of g
s
= 2(r+λ)

r+2λ
, the planner is indifferent over all three arms at

p = 1
2
. Yet, in order to ensure a well-defined time path of beliefs, he has to set KA(

1
2
) =

KB(
1
2
) ∈ [0, 1].

The single-agent optimum has the same structure as the planner’s solution; all that

changes in the relevant differential equations is that 2λ is replaced by λ. Of course, the

relevant cutoffs will also change as a result: In the single-agent problem, complete learning

will obtain for g
s
> 2r+λ

r+λ
; for g

s
< 2r+λ

r+λ
, the agent will switch from risky arm A to the safe

arm at the cutoff belief p∗1 :=
rs

(r+λ)g−λs
> p∗2, and from risky arm B to the safe arm at 1− p∗1.

Thus, whenever the stakes are below the relevant threshold, the second risky option does

10



not play a role; hence, it is not surprising that the same cutoff will be applied as in the

problem with two-armed exponential bandits, where p∗1 and p∗2 are the relevant cutoffs in the

single-player problem and the planner’s problem with two replica bandits, respectively, as

Proposition 3.1 in Keller, Rady, Cripps (2005) shows.

4 Long-Run Equilibrium Learning

As already mentioned in the introduction, Keller, Rady, Cripps (2005) identified two di-

mensions of inefficiency in their model: On the one hand, players give up on finding out

about the true state of the world too soon, i.e. the experimentation amount is inefficiently

small. On the other hand, players also learn too slowly, i.e. the experimentation intensity

is inefficiently low. If one were merely to focus on the long-run properties of learning, only

the former effect would be of interest. Keller, Rady, Cripps (2005) show that, because of the

informational externalities, all experimentation stops at the single-agent cutoff belief in any

equilibrium; the efficient cutoff belief would be more pessimistic, though, as it takes into ac-

count that the information a player generates benefits the other players also.8 Furthermore,

learning is always incomplete, i.e. there is a positive probability that the truth will never be

found out.9 In Klein & Rady (2011), however, the amount of experimentation is always at

the efficient level.10 This is because both players cannot be exceedingly pessimistic at the

same time. Indeed, as soon as players’ single-agent cutoffs overlap, at any possible belief at

least one of them is loath to give up completely, although players may not be experimenting

with the enthusiasm required by efficiency. In particular, learning will be complete in any

equilibrium if and only if efficiency so requires.

This section will show that which of these effects prevails here depends on the stakes

at play: If stakes are so high that the single-agent cutoffs overlap, players would not be

willing ever completely to give up on finding out the true state of the world even if they were

by themselves. Yet, since all a player’s partner is doing is to provide him some additional

8By contrast, Bolton & Harris (1999) identified an encouragement effect in their model. It makes players

experiment at beliefs that are more pessimistic than their single-agent cutoffs. This is because they will have

a success with a non-zero probability, which will make the other players more optimistic also. This then

induces them to provide more experimentation, from which the first player then benefits in turn. With fully

revealing breakthroughs as in Keller, Rady, Cripps (2005), Klein & Rady (2011), or this model, however, a

player could not care less what others might do after a breakthrough, as there will not be anything left to

learn. Therefore, there is no encouragement effect in these models.
9The efficient solution in Keller, Rady, Cripps (2005) also implies incomplete learning.

10For perfect negative correlation, this is true in any equilibrium; for general negative correlation, there

always exists an equilibrium with this property.
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information for free, a player should be expected to do at least as well as if he were by himself.

Hence, the Klein & Rady (2011) effect obtains if players’ single-agent cutoffs overlap, and,

in any equilibrium (in which at least one player’s value function is smooth),11 the true state

of the world will eventually be found out with probability 1 (i.e. learning will be complete),

as efficiency requires. In the opposite case, however, the informational externality identified

by Keller, Rady, Cripps (2005) carries the day, and, as we will see in the next section, there

exists an equilibrium entailing an inefficiently low amount of experimentation. For some

parameters, this implies incomplete equilibrium learning while efficiency calls for complete

learning.

To state our next lemma, I write u∗
1 for the value function of a single agent operating a

bandit with only a safe arm and a risky arm A, while I denote by u∗
2 the value function of a

single agent operating a bandit with only a safe arm and a risky arm B. It is straightforward

to verify that u∗
2(p) = u∗

1(1− p) for all p and that12

u∗
1(p) =

 s if p ≤ p∗1,

g

[
p+

λp∗1
λp∗1+r

(1− p)
(

Ω(p)
Ω(p∗1)

) r
λ

]
if p > p∗1

.

The following lemma tells us that u∗
1 and u∗

2 are both lower bounds on a player’s value in

any equilibrium, provided his value is smooth.

Lemma 4.1 (Lower Bound on Equilibrium Payoffs) Let u ∈ C1 be a player’s equilib-

rium value function. Then, u(p) ≥ max{u∗
1(p), u

∗
2(p)} for all p ∈ [0, 1].

The intuition for this result is very straightforward. Indeed, there are only informational

externalities, no payoff externalities, in our model. Thus, intuitively, a player can only benefit

from any information his opponent provides him for free; therefore, he should be expected

to do at least as well as if he were by himself, forgoing the use of one of his risky arms to

boot.

Now, if g
s
> 2r+λ

r+λ
, then p∗1 < 1

2
< 1 − p∗1, so at any belief p, we have that u∗

1(p) > s or

u∗
2(p) > s or both. Thus, there cannot exist a p such that (k1,A, k1,B)(p) = (k2,A, k2,B)(p) =

11The technical requirement that at least one player’s value function be C1 is needed on account of

complications pertaining to the admissibility of strategies. I use it in the proof of Lemma 4.1 to establish

that the safe payoff s constitutes a lower bound on the player’s equilibrium value. However, by e.g. insisting

on playing (1, 0) at a single belief p̂ while playing (0, 0) everywhere else in a neighborhood of p̂, a player could

e.g. force the other player to play (0, 1) at p̂ for mere admissibility reasons. Thus, both players’ equilibrium

value functions might be pushed below s at certain beliefs p̂. For the purposes of this section, I rule out

such implausible behavior by restricting attention to equilibria in which at least one player’s value function

is smooth.
12See Prop.3.1 in Keller, Rady, Cripps (2005).
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(0, 0) be mutually best responses as this would mean u1(p) = u2(p) = s. This proves the

following proposition:

Proposition 4.2 (Complete learning) If g
s

> 2r+λ
r+λ

, learning will be complete in any

Markov perfect equilibrium in which at least one player’s value function is of class C1.

It is the same threshold 2r+λ
r+λ

above which complete learning is efficient, and prevails

in any equilibrium, in the perfectly negatively correlated two-armed bandit case.13 In our

setting, however, complete learning is efficient for a larger set of parameters, as we saw in

Proposition 3.2. In the following section, I shall proceed to a more thorough analysis of the

strategic problem.

5 Equilibria of the Non-Cooperative Game

5.1 The Bellman Equation

Proceeding as before, I find that the Bellman equation for player i (i ̸= j) is given by14

ui(p) = s+ kj,ABA(p, ui) + kj,BBB(p, ui)

+ max
{(ki,A,ki,B)∈[0,1]2:ki,A+ki,B≤1}

{ki,A [BA(p, ui)− cA(p)] + ki,B [BB(p, ui)− cB(p)]} .

As players are perfectly symmetric in that they are operating two replicas of the same

bandit, the Bellman equation for player j looks exactly the same. It is noteworthy that a

player only has to bear the opportunity costs of his own experimentation, while the benefits

accrue to both, which indicates the presence of free-riding incentives. For future reference,

I define the myopic cutoff belief pm := s
g
by cA(p

m) = 0. A player who was only interested

in maximizing his current payoff would switch from risky arm A (B) to the safe arm at pm

(1− pm).

13See Proposition 8 in Klein & Rady (2011).
14By the smooth pasting principle, player i’s payoff function from playing a best response is once contin-

uously differentiable on any open interval on which (kj,A, kj,B)(p) in continuous. If (kj,A, kj,B)(p) exhibits a

jump at p, u′
i(p), which is contained in the definitions of BA and BB , is to be understood as the one-sided

derivative in the direction implied by the motion of beliefs. In either instance, standard results imply that

if for a certain fixed (kj,A, kj,B), the payoff function generated by the policy (ki,A, ki,B) solves the Bellman

equation, then (ki,A, ki,B) is a best response to (kj,A, kj,B).
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On account of the linear structure of the optimization problem, we can restrict our

attention to the nine pure strategy profiles, along with three indifference cases per player.

Each of these cases leads to a first-order ordinary differential equation (ODE). Details, as

well as closed-form solutions, are provided in Appendix A.

The linearity of the problem provides us with a powerful tool to derive necessary con-

ditions for a certain strategy combination ((k1,A, k1,B), (k2,A, k2,B)) to be consistent with

mutually best responses on an open set of beliefs.15 As an example, suppose player 2 is

playing (1, 0). If player 1’s best response is given by (1, 0), it follows immediately from the

Bellman equation that it must be the case that BA(p, u1) ≥ cA(p) and BA(p, u1)−BB(p, u1) ≥
cA(p)− cB(p) for all p in the open interval in question. Moreover, we know that in the open

interval in question, the player’s value function satisfies

2λp(1− p)u′
1(p) + (2λp+ r)u1(p) = (2λ+ r)pg,

which can be plugged into the two inequalities above, yielding a necessary condition for

(k1,A, k1,B) = (1, 0) to be a best response to (k2,A, k2,B) = (1, 0). Proceeding in this manner

for the possible pure-strategy combinations gives us necessary conditions for a certain pure-

strategy combination to be consistent with mutually best responses on an open interval of

beliefs. I report these necessary conditions as an auxiliary result in Appendix A.

5.2 Efficiency

As already mentioned, the planner’s solution is compatible with equilibrium if and only

if stakes exceed a certain threshold. This may at first glance seem surprising given that a

player provides a positive informational externality through his experimentation; indeed, the

information he generates helps his partner make better decisions in turn. This is the reason

why efficiency is not sustainable in equilibrium in Keller, Rady, Cripps (2005). In Klein &

Rady (2011), this calculation changes, though, when the stakes are so low that the players’

respective single-agent cutoffs do not overlap: In this case, the more pessimistic player will

never play risky under any circumstances, which the more optimistic player will anticipate,

and hence behave efficiently. However, the efficient equilibrium disappears as soon as the

relevant single-agent cutoffs overlap and free-riding incentives kick in again.

While it is not surprising that the utilitarian planner, who now has more options, should

always be doing better than the planner in Klein & Rady (2011), who could not transfer

15As we keep player j’s strategy (kj,A, kj,B) fixed on an open interval of beliefs, player i’s value function

ui (i ̸= j) is of class C1 on that open interval. Therefore, by standard arguments, ui solves the Bellman

equation on the open interval in question.
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resources between the two types of risky arm, it may seem somewhat surprising that, for high

stakes, the players should now be able to achieve even this higher efficient benchmark, while

they could not achieve the lower benchmark in the perfectly negatively correlated two-armed

model in Klein & Rady (2011). Indeed, with the stakes high enough, free-riding incentives

can be overcome completely in non-cooperative equilibrium, as the following proposition

shows.

Proposition 5.1 (Efficient Equilibrium) There exists an efficient equilibrium if and only

if g
s
≥ 4(r+λ)

2r+3λ
.

Since players are playing replica bandits, there will never arise a situation in which one

player is optimistic while the other one is pessimistic; as soon as one player finds it optimal

to experiment in isolation then so will the other player, and free-riding incentives enter the

picture again. Therefore, the Klein & Rady (2011) channel effecting efficiency cannot be at

work here, no matter what the stakes might be. For high stakes, a different channel will kick

in, though: On account of perfect negative correlation between the risky arms, players will

never simultaneously be very pessimistic about both prospects. Hence, for stakes above a

certain threshold, they would never consider the safe option. Moreover, since there are no

switching costs in my model, players would use the risky arm that looks momentarily more

promising if they were left to their own devices. Thus, in the absence of specific incentives

to deviate from this policy, they would do what efficiency requires. In particular, if the other

player behaves efficiently, a player’s best response calls for behaving efficiently also; i.e. there

exists an efficient equilibrium.16

Note that the relevant threshold above which free-riding incentives are totally eclipsed

is lower than 2 (above which experimentation becomes costless). This is because players

are not myopic and take the learning benefit of experimentation into account, at least to

the extent it benefits the player himself. Thus, it is no surprise that the relevant threshold

should be increasing in the players’ impatience r, and decreasing in the informativeness

of experimentation, as measured by λ. However, note that for free-riding incentives to be

totally eclipsed, stakes have to exceed a threshold that is higher than the one making sure

a single agent would never play safe. Indeed, as we have seen, stakes higher than this latter

threshold only ensure that learning will be complete in any equilibrium in which at least one

16In his canonical Moral Hazard in Teams paper, Holmström (1982) shows that a team cannot produce

efficiently in the absence of a budget-breaking principal, on account of payoff externalities between team

members. By contrast, my analysis shows that, in a model with purely informational externalities in which

players can choose whether to investigate a given hypothesis or its negation, the efficient solution becomes

incentive compatible if the stakes at play exceed a certain threshold. In the treasure-hunting game, Chatterjee

& Evans (2004) also show efficiency can be sustained in equilibrium, assuming the treasure is big enough.
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player’s value function is smooth; i.e. while the experimentation amount is at efficient levels,

the intensity does not reach efficient levels as long as g
s
< 4(r+λ)

2r+3λ
.

5.3 Symmetric Equilibrium for Low And Intermediate Stakes

The purpose of this section is to construct a symmetric equilibrium for those parameter

values for which there does not exist an efficient equilibrium. I define symmetry in keeping

with Bolton & Harris (1999) as well as Keller, Rady, Cripps (2005):

Definition An equilibrium is said to be symmetric if equilibrium strategies ((k1,A, k1,B), (k2,A, k2,B))

satisfy (k1,A, k1,B)(p) = (k2,A, k2,B)(p) for all p ∈ [0, 1].

As a matter of course, in any symmetric equilibrium, u1(p) = u2(p) for all p ∈ [0, 1]. I

shall denote the players’ common value function by u.

5.3.1 Low Stakes

Recall that the stakes are low if, and only if, the single-agent cutoffs for the two risky arms do

not overlap. It can be shown that in this case there exists an equilibrium that is essentially

two copies of the Keller, Rady, Cripps (2005) symmetric equilibrium (see their Proposition

5.1), mirrored at the p = 1
2
axis. Specifically, we have the following proposition:

Proposition 5.2 (Symmetric MPE for Low Stakes) If g
s
≤ 2r+λ

r+λ
, there exists a sym-

metric equilibrium where both players exclusively use the safe arm on [1 − p∗1, p
∗
1], the risky

arm A above the belief p̂ > p∗1, and the risky arm B at beliefs below 1− p̂, where p̂ is defined

implicitly by

Ω(pm)−1 − Ω(p̂)−1 =
r + λ

λ

[
1

1− p̂
− 1

1− p∗1
− Ω(p∗1)

−1 ln

(
Ω(p∗1)

Ω(p̂)

)]
.

In [p∗1, p̂], the fraction kA(p) =
u(p)−s
cA(p)

is allocated to risky arm A, while 1− kA(p) is allocated

to the safe arm; in [1 − p̂, 1 − p∗1], the fraction kB(p) =
u(p)−s
cB(p)

is allocated to risky arm B,

while 1− kB(p) is allocated to the safe arm.

Let Vh(p) := pg + Ch(1 − p)Ω(p)
r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)

− r
2λ . Then, the

players’ value function is given by u(p) = W (p) if 1− p̂ ≤ p ≤ p̂, where W (p) is defined by

W (p) :=


s+ r

λ
s
[
Ω(p∗1)

−1
(
1− p

p∗1

)
− p ln

(
Ω(p)
Ω(p∗1)

)]
if 1− p̂ < p < 1− p∗1

s if 1− p∗1 ≤ p ≤ p∗1

s+ r
λ
s
[
Ω(p∗1)

(
1− 1−p

1−p∗1

)
− (1− p) ln

(
Ω(p∗1)

Ω(p)

)]
if p∗1 < p < p̂

;

16



u(p) = Vh(p) if p̂ ≤ p, while u(p) = Vl(p) if p ≤ 1− p̂, where the constants of integration Ch

and Cl are determined by Vh(p̂) = W (p̂) and Vl(1− p̂) = W (1− p̂), respectively.

Thus, in this equilibrium, even though either player knows that one of his risky arms

is good, whenever the uncertainty is greatest, the safe option is attractive to the point that

he cannot be bothered to find out which one it is. When players are relatively certain

which risky arm is good, they invest all their resources in that arm. When the uncertainty

is of medium intensity, the equilibrium has the flavor of a mixed-strategy equilibrium, with

players devoting a uniquely determined fraction of their resources to the risky arm they deem

more likely to be good, with the rest being invested in the safe option. As a matter of fact,

the experimentation intensity decreases continuously from kA(p̂) = 1 to kA(p
∗
1) = 0 (from

kB(1− p̂) = 1 to kB(1− p∗1) = 0). Intuitively, the situation is very much reminiscent of the

classical Battle of the Sexes game: If one’s partner experiments, one would like to free-ride

on his efforts; if one’s partner plays safe, though, one would rather do the experimentation

oneself than give up on finding out the truth. On the relevant range of beliefs it is the case

that as players become more optimistic, they have to raise their experimentation intensities

in order to increase free-riding incentives for their partner. This is necessary to keep their

partner indifferent, and hence willing to mix, over both options.

Having seen that for g
s
≤ 2r+λ

r+λ
, there exists an equilibrium with smooth value functions

that implies incomplete learning, we are now in a position to strengthen our result on the

long-run properties of equilibrium learning:

Corollary 5.3 (Complete Learning) Learning will be complete in any Markov Perfect

equilibrium in which at least one player’s value function is smooth, if and only if g
s
> 2r+λ

r+λ
.

For perfect negative correlation, Klein & Rady (2011) found that with the possible

exception of the knife-edge case where g
s
= 2r+λ

r+λ
, learning was going to be complete in any

equilibrium if and only if complete learning was efficient. While the proposition pertains to

the exact same parameter set on which complete learning prevails in Klein & Rady (2011),

we here find by contrast that if 2(r+λ)
r+2λ

< g
s
≤ 2r+λ

r+λ
, efficiency uniquely calls for complete

learning, yet there exists an equilibrium entailing incomplete learning. This is because with

three-armed bandits information is more valuable to the planner, as in case of a success

he gets the full payoff of a good risky arm. With negatively correlated two-armed bandits,

however, the planner cannot shift resources between the two types of risky arm; thus, his

payoff in case of a success is just g+s
2
.

Thus, while our analysis would unambiguously suggest that, if stakes were high, delegat-

ing project choice to the agents was a good idea since it increases experimentation intensities,
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this conclusion need not hold for g
s
< 2r+λ

r+λ
. For this case, Klein & Rady (2011) have shown

that if agents are assigned one of the projects each, the unique equilibrium features an ex-

perimentation intensity of 1 for the more promising project throughout [0, 1 − p∗1[∪ ]p∗1, 1].

By contrast, in the equilibrium we discussed in Proposition 5.2, the overall experimentation

intensity increases continuously from 0 at p∗1 to 2 at p̂ (decreases continuously from 2 at 1− p̂

to 0 at 1 − p∗1). Thus, for initial beliefs just above p∗1, for instance, the rate of experimen-

tation may be higher if scientists do not have the freedom to choose the hypothesis they

are working on. Hence, if the stakes are low, as arguably they might be at a company like

3M, which makes products such as adhesives and abrasives, it might make sense to restrict

scientists’ discretion.

5.3.2 Intermediate Stakes

For intermediate stakes, the equilibrium I construct is essentially of the same structure as

the previous one: It is symmetric and it requires players to mix on some interval of beliefs.

However, there does not exist an interval where both players play safe, so that players will

always eventually find out the true state of the world, even though they do so inefficiently

slowly.

Proposition 5.4 (Symmetric MPE for Intermediate Stakes) If 2r+λ
r+λ

< g
s
< 4(r+λ)

2r+3λ
,

there exists a symmetric equilibrium. Let p̌ := λ+r
λ
(2pm − 1), and W(p) be defined by

W(p) :=

{
s+ r+λ

λ
(g − s)− r

λ
ps (2 + ln(Ω(p))) if p ≤ 1

2

s+ r+λ
λ
(g − s)− r

λ
(1− p)s (2− ln(Ω(p))) if p ≥ 1

2

Now, let p†1 > 1
2
and p†2 > 1

2
be defined by W(p†1) =

λ+r(1−p†1)

λ+r
g and W(p†2) = 2s − p†2g,

respectively. Then, let p† := p†1 if p†1 ≥ p̌; otherwise, let p† := p†2.

In equilibrium, both players will exclusively use their risky arm A in [p†, 1], and their

risky arm B in [0, 1 − p†]. In ]1
2
, p†], the fraction kA(p) =

W(p)−s
cA(p)

is allocated to risky arm

A, while 1 − kA(p) is allocated to the safe arm; in [p†, 1
2
[, the fraction kB(p) = W(p)−s

cB(p)
is

allocated to risky arm B, while 1−kB(p) is allocated to the safe arm. At p = 1
2
, a fraction of

kA(
1
2
) = kB(

1
2
) = (λ+r)g−(2r+λ)s

λ(2s−g)
is allocated to either risky arm, with the rest being allocated

to the safe arm.

Let Vh(p) := pg + Ch(1 − p)Ω(p)
r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)

− r
2λ . Then, the

players’ value function is given by u(p) = W(p) in [1− p†, p†], by u(p) = Vh(p) in [p†, 1], and

u(p) = Vl(p) in [0, 1 − p†], with the constants of integration Ch and Cl being determined by

Vh(p
†) = W(p†) and Vl(1− p†) = W(1− p†).
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Thus, no matter what initial prior players start out from, there is a positive probability

that beliefs will end up at p = 1
2
, and hence they will try the risky project that looked

initially less auspicious. Therefore, in contrast to the equilibrium for low stakes, there is a

positive value attached to the option of having access to the second risky project.

6 Conclusion

I have analyzed a game of strategic experimentation with three-armed bandits, where the two

risky arms are perfectly negatively correlated. In so doing, I have constructed a symmetric

equilibrium for all parameter values. Furthermore, we have seen that any equilibrium is

inefficient if stakes are below a certain threshold, and that any equilibrium in which at least

one player’s value is smooth involves complete learning if stakes are above a certain threshold.

In particular, if the stakes are high, there exists an efficient equilibrium and learning will

be complete in any equilibrium in which at least one player’s value function is smooth. If

stakes are intermediate in size, all equilibria are inefficient, though they involve complete

learning (provided both players’ value functions are not kinked), as required by efficiency. If

the stakes are low, all equilibria are inefficient, and there exists an equilibrium implying an

inefficiently low amount of experimentation. In particular, if the stakes are low but not very

low, there exists an equilibrium that involves incomplete learning while efficiency requires

complete learning; if the stakes are very low, the efficient solution also implies incomplete

learning.

While I have only investigated the case of perfect negative correlation, the impact of

general pessimism à la Klein & Rady (2011) on the existence of an efficient equilibrium

might constitute an interesting object of further investigation. It seems clear that, in this

problem, the planner’s solution would feature (0, 0) on [0, p∗2]
2, (2, 0) for pA > max{pB, p∗2},

(0, 2) for pB > max{pA, p∗2}, and (1, 1) for pA = pB > p∗2. One would have to expect

that ((1, 0), (1, 0)) could not be sustained in equilibrium for pA > max{pB, p∗2} and pA close

to p∗2 for the same reasons as in this paper. However, ((1, 0), (1, 0)) would clearly prevail

in a neighborhood of (pA, pB) = (1, 0). As is easy to see from the appertaining laws of

motion,
pB,t

1−pA,t
would remain constant in this neighborhood. One might now expect that

if the ratio of initial beliefs
pB,0

1−pA,0
was close enough to 1, ((1, 0), (1, 0)) could be sustained

along the ray pB,t = (1 − pA,t)
pB,0

1−pA,0
all the way to the hyperplane pA,t = pB,t. Once this

hyperplane is reached, admissibility considerations should guarantee the implementability of

((1
2
, 1
2
), (1

2
, 1
2
)) for all pA,t = pB,t ∈ [p∗2,

1
2
]. This would imply that the efficient solution was

incentive compatible if, and only if, both hypotheses’ being wrong was initially very unlikely.

I leave a full exploration of these conjectures for future work.
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Furthermore, it could be interesting to explore the additional trade-offs arising when

players differed with respect to their innate learning abilities, as parameterized by the Poisson

arrival rate of breakthroughs. Analyzing these additional trade-offs that would appear, if,

say, player 1 was able to learn faster on risky arm A, while player 2 was faster with risky

arm B might yield insights into conditions under which there is excessive, or insufficient,

specialization in equilibrium. I intend to explore these questions in future research.

20



Appendix

A Closed-Form Solutions And An Auxiliary Result

If ((0, 0), (0, 0)) is played, it is easy to see that u1(p) = u2(p) = s.

If ((1, 0), (1, 0)) is played, both players’ value functions satisfy the following ODE:

2λp(1− p)u′(p) + (2λp+ r)u(p) = (2λ+ r)pg,

which is solved by

u(p) = pg + C(1− p)Ω(p)
r
2λ ,

where C is some constant of integration.

If ((0, 1), (0, 1)) is played, both players’ value functions satisfy the following ODE:

−2λp(1− p)u′(p) + (2λ(1− p) + r)u(p) = (2λ+ r)(1− p)g,

which is solved by

u(p) = (1− p)g + CpΩ(p)−
r
2λ .

If ((0, 1), (1, 0)) is played, player 1’s value function is linear:

u1(p) =
λ+ r(1− p)

λ+ r
g.

By the same token, player 2’s value is also linear,

u2(p) =
λ+ rp

λ+ r
g.

Symmetrically, if ((1, 0), (0, 1)) is played we have:

u1(p) =
λ+ rp

λ+ r
g,

and

u2(p) =
λ+ r(1− p)

λ+ r
g.

If ((0, 0), (1, 0)) is played, player 1’s value satisfies the following ODE:

λp(1− p)u′(p) + (λp+ r)u(p) = rs+ λpg,

which is solved by

u1(p) = s+
λ

λ+ r
p(g − s) + C(1− p)Ω(p)

r
λ ,

while player 2’s value satisfies

λp(1− p)u′(p) + (λp+ r)u(p) = (λ+ r)pg,

which is solved by

u2(p) = pg + C(1− p)Ω(p)
r
λ .
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Symmetrically, if ((1, 0), (0, 0)) is played, player 1’s value satisfies the following ODE:

λp(1− p)u′(p) + (λp+ r)u(p) = (λ+ r)pg,

which is solved by

u1(p) = pg + C(1− p)Ω(p)
r
λ .

Meanwhile, player 2’s value satisfies:

λp(1− p)u′(p) + (λp+ r)u(p) = rs+ λpg,

which is solved by

u2(p) = s+
λ

λ+ r
p(g − s) + C(1− p)Ω(p)

r
λ .

If ((0, 0), (0, 1)) is played, player 1’s value satisfies the following ODE:

−λp(1− p)u′(p) + (r + λ(1− p))u(p) = rs+ λ(1− p)g,

which admits of the solution

u1(p) =
1

r + λ
[s(r + pλ) + gλ(1− p)] + CpΩ(p)−

r
λ .

As for player 2, his value evolves according to:

λp(1− p)u′(p)− (r + λ(1− p))u(p) = −(1− p)(r + λ)g,

which is solved by

u2(p) = (1− p)g + CpΩ(p)−
r
λ .

Symmetrically, if ((0, 1), (0, 0)) is played, player 1’s value satisfies the following ODE:

λp(1− p)u′(p)− (r + λ(1− p))u(p) = −(1− p)(r + λ)g,

which is solved by

u1(p) = (1− p)g + CpΩ(p)−
r
λ .

Player 2’s value, by contrast, satisfies

−λp(1− p)u′(p) + (r + λ(1− p))u(p) = rs+ λ(1− p)g,

which admits of the solution

u2(p) =
1

r + λ
[s(r + pλ) + gλ(1− p)] + CpΩ(p)−

r
λ .

Moreover, there are three indifference cases for player i: He might be indifferent between his

risky arm A and his safe arm, between his risky arm B and his safe arm, or between his two risky

arms of opposite types.
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If player i is indifferent between his safe arm and his risky arm A, his value function satisfies

the following ODE:

λp(1− p)u′(p) + λpu(p) = (λ+ r)pg − rs,

which is solved by

ui(p) = s+
r + λ

λ
(g − s) +

r

λ
s(1− p) ln [Ω(p)] + C(1− p).

If player i is indifferent between his safe arm and his risky arm B, his value function satisfies

the following ODE:

λp(1− p)u′(p)− λ(1− p)u(p) = rs− (r + λ)(1− p)g,

which is solved by

ui(p) = s+
r + λ

λ
(g − s)− r

λ
sp ln [Ω(p)] + Cp.

If player i is indifferent between both his risky arms, his value function satisfies the following

ODE:

2λp(1− p)u′(p) + λ(2p− 1)u(p) = (λ+ r)(2p− 1)g,

which is solved by

ui(p) =
r + λ

λ
g + C

√
p(1− p).

An Auxiliary Result

The logic we discussed in section 5.1 of the main text gives us the following auxiliary result, which

will be useful in the proofs of Propositions 5.1 and 5.4.

Lemma A.1 Let P ⊂]0, 1[ be an open interval of beliefs in which the action profile remains con-

stant, and let p ∈ P.

Let kj(p) = (0, 0). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then ui(p) = s.

• If player i’s best response is given by ki(p) = (1, 0) or ki(p) = (0, 1), then ui(p) ≥ max{s, r+λ
2r+λg}.

Let kj(p) = (1, 0). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then λ+r(1−p)
λ+r g ≤ ui(p) ≤ 2s− pg.

• If player i’s best response is given by ki(p) = (1, 0), then ui(p) ≥ max{λ+r(1−p)
λ+r g, 2s− pg}.

• If player i’s best response is given by ki(p) = (0, 1), then ui(p) =
λ+r(1−p)

λ+r g and p ≤ min{1−
pm, r+λ

2r+3λ}.

Let kj(p) = (0, 1). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then λ+rp
λ+r g ≤ ui(p) ≤ 2s− (1− p)g.
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• If player i’s best response is given by ki(p) = (1, 0), then ui(p) =
λ+rp
λ+r g and p ≥ max{pm, r+2λ

2r+3λ}.

• If player i’s best response is given by ki(p) = (0, 1), then ui(p) ≥ max{λ+rp
λ+r g, 2s− (1− p)g}.

As r+λ
2r+3λ < 1

2 < r+2λ
2r+3λ , the lemma immediately implies that in no equilibrium ((1, 0), (0, 1)) or

((0, 1), (1, 0)) can arise on an open interval. If furthermore g
s ≥ 2, and hence 2s − pg ≤ λ+r(1−p)

λ+r g

for all p ∈ [0, 1], then ((1, 0), (0, 0)), ((0, 0), (1, 0)), ((0, 1), (0, 0)) and ((0, 0), (0, 1)) cannot arise on

an open interval either.

B Proofs

Proof of Proposition 3.1

The policy (KA,KB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p∗2 and 1 − p∗2, hence is of class C1. It is strictly

decreasing on ]0, 1−p∗2[ and strictly increasing on ]p∗2, 1[. Moreover, u = s+2BB − cB on [0, 1−p∗2],

u = s on [1− p∗2, p
∗
2], and u = s+ 2BA − cA on [p∗2, 1], which shows that u is indeed the planner’s

payoff function from (k1, k2).

To show that u and this policy (KA,KB) solve the planner’s Bellman equation, it is enough to

establish that BB− cB
2 > max{0, BA− cA

2 } on ]0, 1−p∗2[, 0 > max{BA− cA
2 , BB− cB

2 } on ]1−p∗2, p
∗
2[,

BA − cA
2 > max{0, BB − cB

2 } on ]p∗2, 1[. Consider this last interval. There, u = s + 2BA − cA and

u > s (by monotonicity of u) immediately imply 2BA − cA > 0. It remains to be shown that

2BA − cA > 2BB − cB. Using the appertaining differential equation, we have that BA − BB =

u−pg− λ
r (g−u). It is now straightforward to show that BA−BB > cA−cB

2 if and only if u > 2λ+r
2(r+λ)g.

By the afore-mentioned monotonicity properties, we know that u > s; yet, s ≥ 2λ+r
2(r+λ)g if and only

if g
s ≤ 2(r+λ)

2λ+r , i.e. if and only if the stakes are very low. The other intervals are dealt with in similar

fashion.

Proof of Proposition 3.2

The policy (KA,KB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p = 1
2 , hence is of class C1. It is strictly decreasing

on ]0, 12 [ and strictly increasing on ]12 , 1[. Moreover, u = s+2BB−cB on [0, 12 ] and u = s+2BA−cA

on [12 , 1], which shows that u is indeed the planner’s payoff function from (KA,KB).

To show that u and this policy (KA,KB) solve the planner’s Bellman equation, it is enough to

establish that BB − cB
2 > max{0, BA− cA

2 } on ]0, 12 [, and BA− cA
2 > max{0, BB − cB

2 } on ]12 , 1[. To

start out, note that on account of u11 ≥ s, it can never be the case that 0 > max{BA− cA
2 , BB− cB

2 }.
Thus, all that remains to be shown is that BB − cB

2 > BA − cA
2 on ]0, 12 [ and BA − cA

2 > BB − cB
2

on ]12 , 1[. Consider this last interval. Using the appertaining differential equation, we have that

BA−BB = u−pg− λ
r (g−u). It is now straightforward to show that BA−BB > cA−cB

2 if and only

if u > 2λ+r
2(r+λ)g = u11, which is satisfied on account of the afore-mentioned monotonicity properties

and the fact that u(12) = u11. The other interval is treated in a similar fashion.
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Proof of Lemma 4.1

In a first step, I show that s is a lower bound on u. Assume to the contrary that there exists

a belief p† ∈ ]0, 1[ such that u(p†) < s. Then, since u is C1 and u(0) = u(1) = g > s, there

exists a belief p̃ ∈ ]0, 1[ such that u(p̃) < s and u′(p̃) = 0. I write BA and BB for BA(p, u)

and BB(p, u), respectively, suppressing arguments whenever this is convenient. Moreover, I define

B̂A(p) := λ
r p(g − s) > 0 and B̂B(p) := λ

r (1 − p)(g − s) > 0, while denoting by (kj,A, kj,B) the

other player’s action at p̃ in the equilibrium underlying the value function u. Now, at p̃, u < s

immediately implies BA = λ
r p̃(g − u) > B̂A and BB = λ

r (1− p̃)(g − u) > B̂B, and we have that

u− s ≥ kj,A(BA − B̂A) + kj,B(BB − B̂B) = (kj,Ap̃+ kj,B(1− p̃))(s− u) ≥ 0,

a contradiction to u < s.17 Thus, we have already shown that u∗1 bounds u from below at all beliefs

p ≤ p∗1.

Now, suppose there exists a belief p > p∗1 at which u < u∗1. I now write B∗
A := λ

r p[g − u∗1 −
(1 − p)(u∗1)

′(p)] = u∗1 − pg and B∗
B := λ

r (1 − p)[g − u∗1 + p(u∗1)
′(p)]. Since B∗

A + B∗
B = λ

r (g − u∗1),

and hence B∗
B = λ

r (g − u∗1) − (u∗1 − pg), we have that B∗
B ≥ 0 if and only if u∗1 ≤ λ+rp

λ+r g =: w1(p).

Let p̃ be defined by w1(p̃) = s; it is straightforward to show that p̃ < p∗1. Noting furthermore that

u∗1(p
∗
1) = s, w1(1) = u∗1(1) = g, and that w1 is linear whereas u∗1 is strictly convex in p, we conclude

that u∗1 < w1 and hence B∗
B > 0 on [p∗1, 1[ . Moreover, since B∗

A ≥ 0 (see Keller, Rady, Cripps,

2005), we have u∗1 = pg +B∗
A ≤ pg + kj,BB

∗
B + (1 + kj,A)B

∗
A on [p∗, 1], for any (kj,A, kj,B).

Since s is a lower bound on u, by continuity, u(p) < u∗1(p) implies the existence of a belief

strictly greater than p∗1 where u < u∗1 and u′1 ≤ (u∗1)
′. This immediately yields BA > B∗

A > cA, as

well as

u− u∗1 ≥ pg + kj,BBB + (1 + kj,A)BA − [pg + (1 + kj,A)B
∗
A + kj,BB

∗
B]

= kj,B(BA +BB −B∗
A −B∗

B) + (1 + kj,A − kj,B)(BA −B∗
A)

= kj,B
λ

r
(u∗1 − u1) + (1 + kj,A − kj,B)(BA −B∗

A) > 0,

a contradiction.18

An analogous argument applies for u∗2.

Proof of Proposition 5.1

Suppose g
s ≥ 4(r+λ)

2r+3λ . What is to be shown is that the action profiles ((1, 0), (1, 0)) and ((0, 1), (0, 1))

are mutually best responses on ]12 , 1], and [0, 12 [, respectively. At p = 1
2 , admissibility uniquely pins

17Strictly speaking, the first inequality relies on the admissibility of the action (0, 0) at p̃. However,

even if (0, 0) should not be admissible at p̃, my definition of strategies still guarantees the existence of a

neighborhood of p̃ in which (0, 0) is admissible everywhere except at p̃. Hence, by continuous differentiability

of u, there exists a belief ˜̃p in this neighborhood at which the same contradiction can be derived.
18Again, strictly speaking, the first inequality relies on the admissibility of the action (1, 0) at the belief

in question, and my previous remark applies.
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down a player’s response to the other player’s action. By the characterization of efficiency (see

Proposition 3.2), both players’ respective value function if efficiency prevails is given by:

u(p) =

 g
[
1− p+ λ

r+λpΩ(p)
− r

2λ

]
if p ≤ 1

2

g
[
p+ λ

r+λ(1− p)Ω(p)
r
2λ

]
if p ≥ 1

2 .

Now, by Lemma A.1, it is sufficient to show that u(p) > max{λ+r(1−p)
λ+r g, 2s − pg} on ]12 , 1], and

u(p) > max{λ+rp
λ+r g, 2s−(1−p)g} on [0, 12 [. I shall only consider the former interval, as the argument

pertaining to the latter is perfectly symmetric.

Simple algebra shows that if g
s ≥ 4(r+λ)

2r+3λ , w(p) := λ+r(1−p)
λ+r g ≥ 2s − pg everywhere in [12 , 1].

Since u(12) = w(12), and u is strictly increasing while w is strictly decreasing in ]12 , 1[, the claim

follows.

Suppose 2(r+λ)
r+2λ ≤ g

s < 4(r+λ)
2r+3λ , and define w̃(p) := 2s − pg. It is now straightforward to show

that w̃(12) > w(12) = u(12), and, therefore, by Lemma A.1, there exists a neighborhood to the right

of p = 1
2 in which (1, 0) is not a best response to (1, 0).

Suppose that the stakes are very low, i.e. g
s < 2(r+λ)

r+2λ . From our characterization of the efficient

solution (see Proposition 3.1), we know that BA(p
∗
2, u) =

cA(p∗2)
2 , and that the players’ value function

is given by

u(p) =


g
[
1− p+

2λp∗2
2λp∗2+rp (Ω(p)Ω(p

∗
2))

− r
2λ

]
if p ≤ 1− p∗2,

s if 1− p∗2 ≤ p ≤ p∗2,

g

[
p+

2λp∗2
2λp∗2+r (1− p)

(
Ω(p)
Ω(p∗2)

) r
2λ

]
if p ≥ p∗2.

For the efficient actions to be incentive-compatible, it is necessary that BA ≥ cA on ]p∗2, 1]. Yet,

since u is of class C1, we have that limp↓p∗2 BA(p, u) =
cA(p∗2)

2 < cA(p
∗
2), as p

∗
2 < pm.

Proof of Proposition 5.2

First, I show that p̂ as defined in the proposition indeed exists and is unique in ]p∗1, 1[. It is

immediate to verify that the left-hand side of the defining equation is decreasing, while the right-

hand side is increasing in p̂. Moreover, for p̂ = p∗1, the left-hand side is strictly positive, while the

right-hand side is zero. Now, for p̂ ↑ 1, the left-hand side tends to −∞, while the right-hand side

is positive. The claim thus follows by continuity.

The proposed policies imply a well-defined law of motion for the posterior belief. It is imme-

diate to verify that the function u satisfies value matching and smooth pasting at p∗1 and 1−p∗1. To

show that it is of class C1, it remains to be shown that smooth pasting is satisfied at p̂ and 1− p̂.

From the appertaining ODEs, we have that

λp̂(1− p̂)u′(p̂−) + λp̂u(p̂) = (λ+ r)p̂g − rs

and

2λp̂(1− p̂)u′(p̂+) + (2λp̂+ r)u(p̂) = (2λ+ r)p̂g,

26



where I write u′(p̂−) := lim p ↑ p̂u′(p) and u′(p̂+) := lim p ↓ p̂u′(p). Now, u′(p̂−) = u′(p̂+) if and

only if u(p̂) = 2s − p̂g. Now, algebra shows that indeed W (p̂) = 2s − p̂g. By symmetry, we can

thus conclude that W (1− p̂) = 2s− (1− p̂)g and that u is of class C1. Furthermore, it is strictly

decreasing on ]0, 1− p∗1[ and strictly increasing on ]p∗1, 1[. Moreover, u = s+2BB − cB on [0, 1− p̂],

u = s+ kBBB on [1− p̂, 1− p∗1], u = s on [1− p∗1, p
∗
1], u = s+ kABA on [p∗1, p̂] and u = s+2BA− cA

on [p̂, 1], which shows that u is indeed the players’ payoff function from ((kA, kB), (kA, kB)).

Consider first the interval ]1− p∗1, p
∗
1[. It has to be shown that BA − cA < 0 and BB − cB < 0.

On ]1 − p∗1, p
∗
1[, we have that u = s and u′ = 0, and therefore BA − cA = λ+r

r pg − λp+r
r s. This is

strictly negative if and only if p < p∗1. By the same token, BB − cB = λ+r
r (1 − p)g − λ(1−p)+r

r s.

This is strictly negative if and only if p > 1− p∗1.

Now, consider the interval ]p∗1, p̂[. Here, BA = cA by construction, as kA is determined by

the indifference condition and symmetry. It remains to be shown that BB ≤ cB here. Using the

relevant differential equation, I find that BB = λ
r (g−u)+pg−s. This is less than cB = s− (1−p)g

if and only if u ≥ λ+r
λ g − 2r

λ s. Yet, λ+r
λ g − 2r

λ s ≤ s if and only if g
s ≤ 2r+λ

r+λ , so that the relevant

inequality is satisfied. The interval ]1− p̂, 1− p∗1[ is treated in an analogous way.

Finally, consider the interval ]p̂, 1[. Plugging in the relevant differential equation yields BA −
BB = u − pg − λ

r (g − u). This exceeds cA − cB = (1 − 2p)g if and only if u ≥ λ+r(1−p)
λ+r g. At p̂,

the indifference condition gives us kA(p̂) = 1, which implies u(p̂) = 2s − p̂g. Since p 7→ λ+r(1−p)
λ+r g

is decreasing and u is increasing, it is sufficient for us to show that u(p̂) ≥ λ+r(1−p̂)
λ+r g, which is

equivalent to p̂ ≤ λ+r
λ (2pm − 1). From the indifference condition for the experimentation intensity

k̃A(p) := u(p)−s
cA(p) , we see that k̃A is strictly increasing on ]p∗1, p

m[, and that limp↑pm k̃A(p) = +∞;

hence p̂ < pm. Therefore, it is sufficient to show that pm ≤ λ+r
λ (2pm − 1), which is equivalent to

g
s ≤ 2r+λ

r+λ .

Proof of Proposition 5.4

The proposed policies imply a well-defined law of motion for the posterior belief. The function

u is strictly decreasing on ]0, 12 [ and strictly increasing on ]12 , 1[. Furthermore, as lim
p↑12

u′(p) =

lim
p↓12

u′(p) = 0, the function u is of class C1. Moreover, u = s + 2BB − cB on [0, 1 − p†],

u = s+ kBBB on [1− p†, 12 ], u = s+ kABA on [12 , p
†] and u = s+ 2BA − cA on [p†, 1], which shows

that u is indeed the players’ payoff function from ((kA, kB), (kA, kB)).

To establish existence and uniqueness of p†, note that p 7→ λ+r(1−p)
λ+r g and p 7→ 2s − pg are

strictly decreasing in p, whereas W is strictly increasing in p on ]12 , 1[. Now, W(12) =
r+λ
λ g − 2r

λ s.

This is strictly less than
λ+ r

2
λ+r g and 2s − g

2 whenever g
s < 4(r+λ)

2r+3λ . Moreover, W(12) strictly exceeds
λ+r(1−pm)

λ+r g = g − r
r+λs and 2s− pmg = s whenever g

s > 2r+λ
r+λ . Thus, I have established uniqueness

and existence of p† and that p† ∈]12 , p
m[.

By construction, u > max{λ+r(1−p)
λ+r g, 2s − pg} in ]p†, 1], which, by Lemma A.1, implies that

((1, 0), (1, 0)) are mutually best responses in this region; by the same token, u > max{λ+rp
λ+r g, 2s−

(1−p)g} in [0, 1−p†[, which, by Lemma A.1, implies that ((0, 1), (0, 1)) are mutually best responses

in that region.
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Now, consider the interval ]12 , p
†]. Here, BA = cA by construction, so all that remains to be

shown is BB ≤ cB. By plugging in the indifference condition for u′, I get BB = λ
r (g − u) + pg − s.

This is less than cB = s− (1− p)g if and only if u ≥ λ+r
λ g− 2r

λ s = W(12) = u(12), which is satisfied

by the monotonicity properties of u. An analogous argument establishes BA ≤ cA on [1−p†, 12 [.
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