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Abstract

We experimentally implement a dynamic public-good problem, where the pub-
lic good in question is the evolving information about agents’ common state of the
world. Specifically, we test Keller, Rady, and Cripps (2005)’ game of strategic exper-
imentation with exponential bandits in the laboratory. We find strong support for
the prediction of free-riding because of strategic concerns. We also find strong evi-
dence for behavior that is characteristic of Markov Perfect Equilibrium: non-cut-off
behavior, lonely pioneers and frequent switches of action.
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1 Introduction
Innovation and social learning are often the work of pioneers, who, by bearing the costs of
experimenting with a new approach, create informational spill-overs for others. Whether
we consider R&D, resource exploration, or the testing of a new drug, the information pro-
duced by a relatively small set of agents benefits a much larger group of agents. Indeed,
R&D is universally recognized as an important factor of economic growth (Romer 1990;
Grossman and Helpman 1993). An economy’s productivity level depends on innovation,
which is driven by knowledge emerging from cumulative R&D experience as well as an
economy’s overall knowledge stock (Griliches 1988; Coe and Helpman 1995). It is thus
important for economists to analyze pioneers’ incentives for information production in
the presence of informational spill-overs.

There exists a vast experimental literature on games which examines the willingness to
contribute to (linear continuous) public goods (for surveys, see Ledyard 1995 and Chaud-
huri 2011; and for a meta-analysis, see Zelmer 2003). In these environments, payoff-
maximizers’ dominant strategy is to contribute none of their endowment to a group ac-
tivity. The typical environment is such that it creates a social dilemma, leading to zero
contribution to the group activity, while, in the efficient outcome, each player contributes
his entire endowment. For many decades, economists have attempted to experimentally
test this trade-off and to analyze factors that facilitate increased cooperation in such social-
dilemma situations in the lab (e.g., Fehr andGächter 2000 andAmbrus andGreiner 2012).1

In this paper, the public good agents contribute to is the dynamically evolving infor-
mation about agents’ common state of the world. Indeed, economic agents often endeavor
to learn over time about some payoff-relevant aspect of their environment. Think, for in-
stance, of a pharmaceutical company conducting costly clinical trials to find out the effec-
tiveness of a drug. Learning often requires a costly investment in information acquisition,
so that agents face a dynamically evolving trade-off on how much information to acquire.
Indeed, in light of the signals it receives, the pharmaceutical company will revise its be-
liefs and decide whether to incur the costs necessary to acquire additional information by
continuing its trials, or to give up.

Our setting differs from the previous experimental literature in that agents’ incentives
for free-riding depend on the information available to them, which evolves over time as
a result of previous choices. In the theory literature, multi-armed bandit models have be-
come canonical to study information producers’ dynamic trade-offs. At each point in time,
a decision maker either optimally exploits the information he already has, or he decides to
invest in exploration in order tomake better future decisions. Until fairly recently, the liter-
ature focussed on the trade-off of an individual decision maker acting in isolation. Bolton
andHarris (1999) andKeller, Rady, and Cripps (2005) (subsequently: KRC) have extended
the individual choice problem to a multi-player continuous-time framework. There now
appears a strategic component to the information-acquisition problem, in that other play-
ers now also benefit from the information acquired at a cost by a given player. To make the

1For early experimental studies, see Kim and Walker (1984), Isaac, Walker, and Thomas (1984), Isaac,
McCue, and Plott (1985), Isaac and Walker (1988a,b), and Andreoni (1988). For early studies embedded in
the sociology literature, see Marwell and Ames (1979, 1980, 1981).
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problem tractable, these papers are focussing on the choice between a safe arm, yielding
a known payoff, and a risky arm, which yields payoffs following a stochastic process. The
time-invariant quality of this risky arm can be good or bad. If it is good (bad), it dominates
(is dominated by) the safe arm. Whether the risky arm is good or bad is initially unknown
and can only be found out by trying it out over time. Trying it out is costly, however, as it
means forgoing the safe payoff. As the quality of the risky arm is assumed to be the same
across players, and players can observe each other’s actions and payoffs, there is a positive
informational externality associated with a player’s use of the risky arm. This gives rise to
a dynamic public-good problem in the form of dynamically evolving information about
agents’ common state of the world.

While the game-theoretical analysis of these problems will lead to multiple equilibria,
it has nonetheless yielded many sharp qualitative behavioral predictions. Yet, empirical
evidence for these predictions has thus far been scarce. Indeed, the dynamic nature of
the problem and the continuous-time setting underlying its theoretical analysis raise some
challenges both for the collection of field data and the experimental implementation in the
laboratory. To the best of our knowledge, we are the first to implement an experimental
test of continuous-time strategic-experimentation models in the laboratory. Our goal in
doing so is twofold. Firstly, we want to test whether the bandit models correctly predict
agents’ behavior “in the model”, by making our subjects face a setting closely resembling
KRC’s. This is of course a necessary, but by no means sufficient, condition for us to have
“the right model” to approach these questions with. Secondly, we aim to shed some light
on which of the multiple equilibria seem best-suited to capture actual behavior.

Our analysis relies on comparing the behavior of our experimental subjects in groups
where the quality of the risky arm was known to be the same for all partners (which we
call the strategic treatment) to that of groups where its quality was iid across members,
the control treatment. When the quality of the risky arm is known to be the same across
players, rational agents will take into account the result of their partners’ experimentation
when updating their beliefs. As they can learn from what others are doing, they have an
incentive to induce others to behave in certain ways so they may learn from it. There is
thus some strategic interaction across players, even though a player’s payoffs depend only
on his own action and the common state of the world, i.e., there are no payoff externalities.

Specifically, we use the simplest formalization of the continuous-time strategic-exp-
erimentation framework, KRC’s exponential-bandit set-up, as our theoretical benchmark.
In this setting, a bad risky arm never yields any payoff, while a good risky arm gives lump-
sum payoffs at the jumping times of a Poisson process. Thus, whenever the risky arm is
used without a success, players gradually grow pessimistic about its quality; as soon as they
observe a success, they know for sure that the risky arm is good.

KRC analyze Markov perfect equilibria (MPE) with the players’ common posterior
belief as a state variable.2 While there is a continuum of MPE, all equilibria make two fun-
damental qualitative predictions regarding players’ behavior: As information is a public
good, players will produce too little of it. Furthermore, it is predicted that all players will

2These are perfect Bayesian equilibria where a player’s action choice depends on the history only via the
common posterior belief.
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not use a simple cut-off strategy in equilibrium. A cut-off strategy is defined by a unique
threshold belief above which it prescribes risky play, while prescribing safe play below it.

Hörner, Klein, and Rady (2014) (subsequently: HKR) analyze non-Markovian equilib-
ria, i.e., perfect Bayesian equilibria (PBE) in which a player’s action choice can depend on
the history in more complex ways. They show that free-riding prevails in all PBE as well.
Moreover, the average-payoffmaximizing PBE is strongly symmetric and has a particularly
simple structure: Players play a cut-off strategy (on the path of play), applying the same
cut-off as a single agent.

Our empirical tests are designed to contrast the qualitative predictions of MPE with
those of the best PBE, which is a natural candidate for a focal equilibrium both because
it maximizes players’ average equilibrium payoffs and because it has a particularly sim-
ple structure. In a first step, we show that the informational externality indeed impacts
subjects’ behavior: the average experimentation intensity is lower, and subjects’ payoffs
are higher, in the strategic treatment. Secondly, we find strong evidence of the kind of
qualitative behavior predicted by MPE as opposed to the simpler behavior predicted by
the best PBE, with players’ adopting more sophisticated behaviors than cut-off strategies
in the strategic treatment. Indeed, players switch much more between safe and risky, and
use cut-off strategies much less frequently, than they do in the control treatment. More-
over, there is a larger proportion of time during which exactly one player is playing risky in
the strategic treatment. These effects are more pronounced for two-player groups than for
groups of size three, and are fully consistent with the players’ switching between the roles
of pioneer and free-rider, which characterizes equilibrium play at intermediate beliefs in
KRC and differentiates it, e.g., from the best PBE in HKR.

Our game is of course very complicated, so that we cannot reasonably expect subjects to
be able to compute equilibrium strategies. Yet, subjects’ experimentation efforts are clearly
decreasing with the incremental arrival of bad news in the form of unsuccessful previous
experimentation. This would suggest that, even though subjects could of course not be
expected to update using Bayes’ rule precisely in continuous time, they were nonetheless
reacting to the dynamically evolving incentives. Furthermore, we are documenting behav-
ior that is very much in line with the sophisticated coordination required by MPE play, as
opposed, e.g., to the simpler structure of the best PBE.

The rest of the paper is organized as follows: Section 2 reviews some additional re-
lated literature; Section 3 explains the KRC model in more detail; Section 4 sets out our
experimental implementation; Section 5 discusses our main findings, and Section 6 con-
cludes. Appendix A breaks down the analysis to the individual games subjects played and
Appendix B exhibits and explains the interface our experimental subjects were using. Ap-
pendix C reproduces the instructions the subjects received.

2 Literature Review
The bandit problem as a stylized formalization of the trade-off between exploration and
exploitation goes back to Thompson (1933) and Robbins (1952). It was subsequently ana-
lyzed, amongst others, by Bellman (1956) and Bradt, Johnson, and Karlin (1956). Its first
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application to economics was in Rothschild (1974), who analyzed the price-setting prob-
lemof a firm facing an unknowndemand function. Gittins and Jones (1974) showed that, if
arms are stochastically independent of each other and the state of only one arm can evolve
at any one time, an optimal policy in the multi-armed bandit problem is given by the so-
called “Gittins Index” policy. For this policy, one can consider the problem of stopping on
each arm in isolation from the other arms. The value of this stopping problem is the so-
called Gittins Index for this arm. Now, an optimal policy consists of, at each point in time,
using the arm with the highest Gittins Index. Presman (1990) calculated the Gittins Index
for the case in which the underlying stochastic process is a Poisson process. Bergemann
and Välimäki (2008) give a survey of this literature.

Bolton and Harris (1999, 2000) were the first to consider the multi-player version of
the two-armed bandit problem. While they assumed that the underlying stochastic pro-
cess was a Brownian motion, KRC analyzed the corresponding problem with exponential
processes. This model proved to be more tractable and is underlying our theoretical hy-
potheses. While the previous papers focussed on MPE, HKR extended the equilibrium
concept beyond Markov perfect equilibrium.3

We are aware of only one other experimental investigation of a strategic-experimen-
tation problem with bandits, by Boyce, Bruner, and McKee (2016). Their setting is specif-
ically designed to test for strategic free-riding in a two-player, two-period context. Coor-
dination issues are assumed away in that one player was known to have lower opportunity
costs for playing risky than the other, so that it was clear which player ought to play the
role of pioneer (and that of free-rider respectively) in the first period. Moreover, in Boyce,
Bruner, and McKee (2016)’s experiment, subjects faced ambiguity concerning the type of
the risky arm. Indeed, they were not told a prior probability of the risky arm’s type, which
allows for an explanation of subjects’ behavior that relies on their priors and ambiguity
attitudes. Our investigation, by contrast, is focussed on how players resolve the coordina-
tion problems arising from strategic interaction, and on comparing the predictive powers
of different equilibrium concepts for this purpose. It was our goal to construct an exper-
imental setting that was as close as possible to the continuous-time setting that has been
extensively studied in the theoretical literature. Our subjects all face the same decision
problem and are given a Bayesian prior at the outset. As they interact in (inertial) con-
tinuous time with a stochastic and unknown deadline, their action spaces are essentially
continuous.

The only other papers we are aware of that conduct experimental tests of bandit prob-
lems consider exclusively various single-agent problems without strategic interdependen-
cies among experimental subjects. Banks, Olson, and Porter (1997) experimentally im-
plement bandits with simple win-lose (Bernoulli) payout distributions, and test whether

3Many variants of the multi-player bandit problem have been analyzed since. In Keller and Rady (2010),
a bad risky arm also sometimes yields a payoff. In Klein and Rady (2011), the quality of the risky arm
is negatively correlated across players. Klein (2013) introduces a second risky arm, with a quality that is
negatively correlated with that of the first. In Keller and Rady (2015), the lump-sum payoffs are costs to
be minimized. Rosenberg, Solan, and Vieille (2007) and Murto and Välimäki (2011) analyze the case of
privately observed payoffs, while Bonatti andHörner (2011) investigate the case of privately observed actions.
Bergemann and Välimäki (1996, 2000) consider strategic experimentation in buyer-seller settings. Hörner
and Skrzypacz (2016) give a survey of this literature.
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subjects value information gained through experimentation. In their experimental design
the expected payoff of one arm is known, while the other is unknown. Experimentation
is observed more in one treatment where initial selection of the unknown arm is optimal
compared to the treatment where experimentation is suboptimal. These results suggest
that subjects’ behavior is consistent with the normative predictions and that subjects value
the information gained through costly experimentation.

A couple of papers by Meyer and Shi (1995) and Gans, Knox, and Croson (2007) em-
ploy a different experimental approach, aiming at identifying choice patterns that are con-
sistent with a list of simple decision rules. Meyer and Shi (1995) test decision under ambi-
guity and use experimental data to generate hypotheses about subject’s possible heuristics.
While observed choice behavior indicates Bayesian updating of priors, their experimen-
tal subjects also exhibit a strong bias toward myopic choices. Among all decision rules
considered, the simple stick-with-a-winner strategy fits the data best. Gans, Knox, and
Croson (2007) consider a list of simple discrete-choice models in a two-armed bandit set-
up. The optimal choice model could not explain their experimental data well. To predict
choice behavior, simpler heuristic models are proposed. Indeed, backward-looking strate-
gies which predict switching arms after a fixed number of consecutive failures best explain
the observed choices.

Anderson (2001, 2012) uses arms with payout distributions, e.g., simulated dice rolls
and normally distributed rewards. He finds that subjects experiment less than would be
optimal, and are willing to pay more for getting perfect information than theory would
predict. In this set-up ambiguity aversion along witxh diffuse priors is identified as a driver
of the observed behavior in the laboratory.

3 TheTheoretical Framework
We borrow our theoretical reference framework from KRC. There are 𝑛 ≥ 1 players, each
of whom plays a bandit machine with two arms over an infinite horizon. One of the arms
is safe, and yields a known flow payoff of 𝑠 > 0whenever it is pulled. The other arm is risky
and can be either good or bad. If it is bad, it never yields any payoff. If it is good, it yields
a lump sum of ℎ > 0 at the jumping times of a Poisson process with parameter 𝜆 > 0. It is
assumed that 𝑔 ∶= 𝜆ℎ > 𝑠. Players decide in continuous time which arm to pull. Payoffs
are discounted at a rate 𝑟 > 0. If they knew the quality of the risky arm, players would
have a strictly dominant strategy always to pull a good risky arm and never to pull a bad
one. They are initially uncertain whether their risky arm is good or bad. Yet, the only way
to acquire information about the quality of the risky arm is to use it, which is costly as it
implies forgoing the safe payoff flow 𝑠. The 𝑛 players’ risky arms are either all good or all
bad. Players share a common prior belief 𝑝0 ∈ (0, 1) that their risky arms are good. Every
player’s actions as well as the outcomes of their actions are publicly observable; therefore,
the information one player produces benefits the other players as well, creating incentives
for players to free-ride on their partners’ efforts. Players thus share a common posterior
belief 𝑝𝑡 at all times 𝑡 ∈ ℝ+. All the parameter values and the structure of the game are
common knowledge.
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The common posterior beliefs are derived from the public information via Bayes’ rule.
As a bad risky arm never yields any payoff, the first arrival of a lump sum fully reveals
the quality of all players’ risky arms. Thus, if a success on one of the players’ risky arms is
observed at instant 𝜏 ≥ 0, the common posterior belief satisfies 𝑝𝑡 = 1 for all 𝑡 > 𝜏. If no
success has been observed until instant 𝑡, the common posterior belief satisfies

𝑝𝑡 =
𝑝0𝑒−𝜆∫

𝑡
0 ∑
𝑁
𝑖=1 𝑘𝑖,𝜏 𝑑𝜏

𝑝0𝑒−𝜆∫
𝑡
0 ∑
𝑁
𝑖=1 𝑘𝑖,𝜏 𝑑𝜏 + 1 − 𝑝0

,

where 𝑘𝑖,𝜏 = 1 if player 𝑖 uses the risky arm at instant 𝜏 and 𝑘𝑖,𝜏 = 0 otherwise.

KRC show in their Proposition 3.1 that, if players are maximizing the sum of their
payoffs, all players 𝑖 ∈ {1,⋯ , 𝑛} choose 𝑘𝑖,𝑡 = 1 if 𝑝𝑡 > 𝑝∗𝑛 ∶= 𝑟𝑠

(𝑟+𝑛𝜆)(𝑔−𝑠)+𝑟𝑠 , and 𝑘𝑖,𝑡 = 0
otherwise. Note that 𝑝∗𝑛 is strictly decreasing in the number of players 𝑛. In particular,
in the single-agent case (𝑛 = 1), the decision maker optimally sets 𝑘1,𝑡 = 1 if 𝑝𝑡 > 𝑝∗1 ∶=
𝑟𝑠

(𝑟+𝜆)(𝑔−𝑠)+𝑟𝑠 , and 𝑘1,𝑡 = 0 otherwise.

KRC go on to analyze the game of strategic information acquisition, where each player
maximizes his own payoff, not taking into account that the information he produces is
valuable to the other players as well. They analyze perfect Bayesian equilibria in Markov
strategies (MPE), i.e., strategies where a player’s action after any history can be written as
a time-invariant function 𝑘𝑖(𝑝) of the common belief at that history. It is shown that, for
beliefs close to 1 (0), playing risky (safe) is a dominant action; for intermediate beliefs,
players’ effort levels are strategic substitutes. In any MPE with a finite number of switches,
all players will set 𝑘𝑖(𝑝) = 0 for all 𝑝 ≤ 𝑝∗1 (see Proposition 6.1 in KRC). Moreover, it is
shown that there exists no MPE in which all players play a cut-off strategy, i.e., a strategy
that prescribes the use of the risky arm for beliefs above a single cut-off and that of the
safe arm below. The intuition for this result is best described in the context of a two-player
game. Indeed, suppose to the contrary that there existed an equilibrium in cut-off strate-
gies. As there is a region of beliefs in which safe and risky aremutually best responses, both
players cannot use the same cut-off in equilibrium; i.e., one player plays the role of pioneer,
while the other one free-rides, throughout the belief region where safe and risky are mu-
tually best responses. As he gets all his information for free in the relevant belief region,
the free-rider’s payoff function will be higher than the pioneer’s. As a player’s propensity
to play risky is increasing in his own payoff, however, this would imply that the free-rider
entered the region in which risky is dominant at a more pessimistic belief than the pioneer.
Thus, the roles of pioneer and free-rider must switch at least once in equilibrium.

HKR extend the analysis to non-Markovian PBE. They show that on the path of play in
the average-payoff maximizing PBE, all players set 𝑘𝑖(𝑝) = 1 for all 𝑝 > 𝑝∗1 , and 𝑘𝑖(𝑝) = 0
otherwise. Thus, in stark contrast to the simple structure of the single-agent optimum or
HKR’s average-payoff maximizing PBE, every MPE has the property that, for intermediate
beliefs, players change roles between experimenter and free-rider at least once. As amatter
of fact, KRC show that, for any given number of role changes greater than, or equal to, one,
there exists an MPE with that number of role changes. A behavioral prediction of MPE is
thus that players change roles for intermediate beliefs at least once.4

4KRC show that there is also a unique symmetric MPE, where players use the risky (safe) arm with an
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4 Parametrization and Experimental Design

4.1 Experimental Implementation
In our experimental treatments, the number of players will be 𝑛 = 2 or 𝑛 = 3. Indeed, as
we have seen in the previous section, the overall amount of experimentation, as measured
by the threshold belief 𝑝∗1 , at which all experimentation stops, is independent of the num-
ber of players 𝑛. By contrast, the efficient threshold 𝑝∗𝑛 is decreasing in 𝑛. Moreover, the
complexity of the coordination required to play MPE is higher the greater the number of
players 𝑛. We choose the discount rate 𝑟 = 1120 . To implement the infinite-horizon game in
the laboratory, we end the game at the first jump time of a Poisson process with parameter
𝑟.5 With one unit of time corresponding to a second in our experimental implementation,
games thus last 120 seconds in expectation. Ours being a rather complicated game that
places high demands on subjects’ concentration, our goal was to limit the duration of the
game, while at the same time allowing for the collection of a wealth of data. We set the
probability that the risky arm is good 𝑝0 = 12 , the safe payoff 𝑠 = 10, the lump-sum amount
paid out by a good risky arm ℎ = 2500, and the arrival rate of lump sums on the good risky
arm 𝜆 = 1100 . Thus, 25 = 𝑔 > 𝑠 = 10. With this parametrization, the game starts in the
belief region where risky is a dominant action; if no breakthrough arrives, play then moves
into the belief region where safe and risky are mutually best responses, before entering the
region where safe is dominant. The realizations of all random processes were simulated
ahead of time.6 We generated six different sets of realizations of the random parameters,
corresponding to six different games each of our subjects played. To make our findings
more easily comparable, we have kept the same realizations for both the strategic and the
control treatments.7 In keeping with the theoretical predictions, we have endeavored to
implement our experimental investigation in continuous time, subject to the restrictions
imposed by the available computing power.8

Subjects were randomly assigned to groups of 𝑛 = 2 or 𝑛 = 3 players. We used a
between-subject design: Each group was randomly assigned either to a control treatment
or to a strategic treatment, and played the six games in random order. To ensure a bal-
anced data-collection process, we replicated any order of the six games that was used for 𝑘
(𝑘 ∈ {1,⋯ , 10}) groups in the strategic treatment for 𝑘 groups in the control treatment as
well. Subjects could see their fellow group members’ action choices and payoffs on their

interior intensity 𝑘(𝑝) ∈ (0, 1) (1 − 𝑘(𝑝)) throughout the belief region where risky and safe are mutually best
responses. As we wanted to keep the decision problem as simple as possible, our subjects do not have the
option of choosing interior experimentation levels. Please also see our discussion in the Conclusion.

5Subjects knew that the end time of the game corresponded to the first jumping time of a Poisson process
with parameter 𝑟 but did not know the realization of this process at any time before the game ended. In
particular, the time axis they saw on their computer screens gradually grew longer as time progressed, so
that they could not infer the end date. Please see Appendices B and C for details and for the instructions the
subjects received.

6As all our stochastic processes are Lévy processes, simulating their realizations ahead of time is equiv-
alent to simulating them as the game progresses. In order to increase the computational efficiency of the
implementation, we chose to simulate them ahead of time.

7Details are available from the authors upon request.
8Thus, our implementation corresponds to the “Inertial Continuous-Time” setting in Calford and Oprea

(2017).
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computer screens. They had to choose an action before the game started and could switch
their action at any point in time by clicking on the corresponding buttonwith theirmouse.9

All experimental sessions took place in July and August 2017 at the BizLab Experimen-
tal Research Laboratory at UNSWSydney. All subjects were recruited from the university’s
subject pool and administered by the online recruitment system ORSEE (Greiner 2015).
All participants were native speakers of English. In total, 100 subjects, 46 of whom were
female, participated in 60 sessions. The participants’ age ranged from 18 to 35 years, with
an average of 20.78 and a standard deviation of 2.43. Because the implementation was
computationally very intensive and because we wanted to collect eye-tracking data, only
between 2 and 3 subjects participated at a time in each session. Upon arrival, participants
were seated in front of a computer at desks which were separated by dividers to minimize
potential communication. Participants received written instructions and had the oppor-
tunity to ask questions.10 After the subjects had successfully completed a simple compre-
hension test, the eye-tracking devices were calibrated, after which the subjects started the
experiment. The experiment was programmed in zTree (Fischbacher 2007). At the end
of the experiment, we collected some information on participants’ demographic attributes
and risk attitudes. They were then privately paid their cumulated experimental earnings
from one randomly selected game in cash (with a conversion rate of E$ 100 = AU$ 1) plus
a show-up fee of AU$ 5. No subject was allowed to participate in more than one session.
The average session lasted about 50 minutes, with average earnings of AU$ 23.86 (with a
standard deviation of AU$ 9.95).

4.2 Behavioral Hypotheses
One of the main theoretical predictions of both MPE and PBE is that players use the risky
arm less in a strategic setting than in a situation in which they are single players. This is
because players free-ride on the information their partners are producing. Indeed, players
are predicted to play safe at all beliefs 𝑝 ≤ 𝑝∗1 in all these instances, while efficiency would
require that they play risky at all beliefs 𝑝 > 𝑝∗𝑛 , where 𝑝∗𝑛 < 𝑝∗1 . Single players and players
playing the best PBE should play risky at all beliefs 𝑝 > 𝑝∗1 , i.e., in the average-payoff
maximizing PBE, players on path adopt the same cut-off behavior as a single agent. In
any MPE, by contrast, since at least one player is not playing a cut-off strategy, at least one
player will play safe at some beliefs above 𝑝∗1 . Indeed, it is possible to derive a lower bound
𝑝‡ ∈ (𝑝∗1 , 𝑝𝑚), where 𝑝𝑚 ∶= 𝑠𝑔 is a myopic player’s cut-off belief, such that, for all beliefs
in (𝑝∗1 , 𝑝‡), at least one player plays safe. Indeed, as KRC show (their Equation (6), p.49),
it is a best response for player 𝑖 to play safe if and only if his value function 𝑢𝑖(𝑝) satisfies
𝑢𝑖(𝑝) ≤ 𝑠 + 𝐾−𝑖(𝑝)𝑐(𝑝), where 𝐾−𝑖(𝑝) ∶= ∑𝑗≠𝑖 𝑘𝑗(𝑝) is the number of players other than
𝑖 who play risky at belief 𝑝, and 𝑐(𝑝) ∶= 𝑠 − 𝑝𝑔 is a player’s myopic opportunity cost for
playing risky, given the belief 𝑝. An upper bound on a player’s equilibrium value function
𝑢𝑖 is given by 𝑉𝑛,𝑝∗1 , the value function of all players playing risky on (𝑝∗1 , 1], and safe on
[0, 𝑝∗1 ]. Thus, a lower bound 𝑝‡ is given by the unique root𝑉𝑛,𝑝∗1 (𝑝

‡) − 𝑠− (𝑛−1)𝑐(𝑝‡) = 0.
By the same token, we can derive an upper bound ̄𝑝 on the lowest belief at which risky
is a dominant action. For this, we use the fact that the single-agent value function 𝑉∗1

9Please see the Appendix B for more details and screen shots.
10The instructions handed out to all participants can be found in Appendix C.
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constitutes a lower bound on a player’s equilibrium value function 𝑢𝑖, and find our upper
bound ̄𝑝 as the unique root 𝑉∗1 ( ̄𝑝) − 𝑠 − (𝑛 − 1)𝑐( ̄𝑝) = 0.

With our numerical parameters, 𝑝𝑚 = 0.4, ̄𝑝 ≈ 0.3578 ( ̄𝑝 ≈ 0.3742) if 𝑛 = 2 (𝑛 = 3),
𝑝‡ ≈ 0.3428 (𝑝‡ ≈ 0.3609) if 𝑛 = 2 (𝑛 = 3), 𝑝∗1 ≈ 0.2326, 𝑝∗2 ≈ 0.1031, and 𝑝∗3 ≈ 0.0535. As
𝑝0 = 0.5 > 0.4 = 𝑝𝑚, players start out with a belief that makes playing risky the dominant
action. If, in the strategic treatment, 𝑛 players were uninterruptedly playing risky and there
was no breakthrough, the belief would drop to𝑝𝑚 after 40.6/𝑛 seconds, to our upper bound
in the game with 𝑛 = 2 players (𝑛 = 3 players) ̄𝑝 after 58.5/𝑛 (51.5/𝑛) seconds, to our lower
bound in the game with 𝑛 = 2 players (𝑛 = 3 players) 𝑝‡ after 65.0/𝑛 (57.0/𝑛) seconds, to
𝑝∗1 after 119.4/𝑛 seconds, to 𝑝∗2 after 216.4/𝑛 seconds, and to 𝑝∗3 after 287.4/𝑛 seconds. For
the control treatment, the same times apply with 𝑛 = 1.

4.2.1 Free-Riding

Let �̂� be the time of a first breakthrough or the end of the game, whichever arrives first. In
order to measure the prevalence of free-riding, we investigate the behavior of the average
experimentation intensity, where, following KRC, we define the experimentation intensity
at instant 𝑡 as∑𝑛𝑖=1 𝑘𝑖,𝑡. Note that, in the control treatment, a player conforming to the the-
oretical prediction will always play risky until his belief hits 𝑝∗1 . In the strategic treatment,
at least one of them will switch to safe at a belief strictly above 𝑝∗1 if they play an MPE. In
the best PBE, they both play risky until the belief 𝑝∗1 is reached. Furthermore, condition-
ally on no success arriving, beliefs will decrease faster in the strategic setting, as player 𝑖’s
belief also decreases in response to player 𝑗’s hapless experimentation. As both effects go in
the same direction, the average experimentation intensity should be lower in the strategic
setting, whether players play MPE or the best PBE. We thus formulate the following

Hypothesis 1. The average experimentation intensity ∫
�̂�
0 ∑
𝑛
𝑖=1 𝑘𝑖,𝑡 𝑑𝑡
𝑛�̂� is significantly lower in the

strategic treatment than in the control treatment.

Our game is one of purely (positive) informational externalities; i.e., players always
have the option of ignoring the additional information they get for free from their part-
ner(s). This observation motivates our following hypothesis

Hypothesis 2. Players’ average final payoffs are higher in the strategic treatment.

4.2.2 MPE vs. Best PBE

As explained above, KRC predict that subjects will use cut-off strategies in the control
treatment, whereas at least one player will not use a cut-off strategy in the strategic setting
if MPE is played. By contrast, HKR show that cut-off behavior prevails on path in the
strategic setting also if the best PBE is played. Cut-off behavior consists in a player’s playing
risky at the outset, and continuing to play risky until his risky arm is revealed to be good, the
game ends, or he switches to the safe action, and continues to play safe until the game ends
or his risky arm is revealed to be good. To investigate whether, qualitatively, the behavior
predicted by MPE prevailed, we shall examine the following

Hypothesis 3. The frequency of cut-off behavior is significantly higher in the control treat-
ment than in the strategic treatment.
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In order further to discriminate between simple MPE and the best PBE, we measure
the proportion of time (before a first breakthrough) duringwhich exactly one of the players
plays risky. Theory would predict this proportion to be nil both in the control treatment
and in HKR’s best PBE, while it is positive in KRC’s MPE. We thus formulate the following

Hypothesis 4. The proportion of time before a first breakthrough during which exactly one
player plays risky is higher in the strategic treatment than in the control treatment.

Thenon-cut-offbehavior predicted byMPEmoreover implies that players should switch
arms more often in the strategic treatment. Yet, as noted above, learning also tends to be
faster in the strategic setting, so that beliefs may more quickly reach the threshold at which
the player will want to change his action. While this effect would add to making switch-
ing more prevalent in the strategic treatment, a substantially higher number of switches in
the strategic treatment would provide further evidence in favor of subjects’ adopting MPE
behavior. Indeed, recall that players are predicted to switch action at most once in both
the control treatment and the best PBE, while, for any number of role changes, there ex-
ists an MPE with that number of role changes, as KRC show. For a two-player game, this
e.g., implies that one of the players must switch actions at least twice, with the other one
switching once, before 𝑝∗1 is reached.11 To control for the effect that, the longer the game
goes on, the more time players have to switch actions, we define the incidence of switches as
the number of a player’s switches in a given game per unit of effective time, where effective
time is understood as the time before the game ends or the player’s risky arm is revealed to
be good, whichever happens first. Thus, we shall check the following

Hypothesis 5. The incidence of switches is significantly higher in the strategic treatment than
in the control treatment.

The coordination required by MPE play is decidedly more complex than that which
underlies the best PBE.Moreover, this complexity increases with the number of players for
the former, while it remains unchanged for the latter. Indeed, recall that the latter implies
cut-off behavior on the path of play, while the former is characterized by frequent role
changes. This is inherently all the more complicated the more players there are. Therefore,
onemight expect thatMPE-type behavior wasmore prevalent with groups of 𝑛 = 2 players
than with groups of size 𝑛 = 3. Hence, our following

Hypothesis 6. In the strategic treatment, there is more cut-off behavior and fewer switches,
while single pioneers are less prevalent, if 𝑛 = 3 than if 𝑛 = 2.

5 Experimental Results

5.1 Overview
Figures 1, 2 and 3 display the evolution of players’ action choices over all six games. Players’
actions are described by dots, the width of which corresponds to one second of time. For

11Note that if players were to play the best PBE and the game happened to stop at a time such that𝑝∗1 is only
reached in the strategic treatment, we should observe exactly one switch per player in the strategic treatment
and none in the control treatment. Therefore, a higher number of switches in the strategic treatment is not
inconsistent with players’ playing the best PBE. However, the magnitude of the effect, which we report in
Section 5, cannot be accounted for by this explanation.
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each of the six games, we conducted four treatments with ten groups each, the parameters
of which (i.e., their duration, the quality of the risky arm and the timing of successes on
the risky arm in case it was good) we had simulated ahead of time, as explained in Section
4. As the figures show, the duration of the games ranged from 32 seconds for Game 5 to
230 seconds for Game 4. As is furthermore evident from the figures, players change their
behaviors over time. While often playing risky at the beginning, players seem to grow less
inclined to use the risky arm the longer it has unsuccessfully been used before. This shows
that our subjects adapted to the evolving information about their environment.

In this section, we conduct our analysis by averaging over the six games each subject
played. Analysis of the individual games can be found in Appendix A.
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Figure 1: Action Choices by Players over Time, Games 1 & 6

Games 1 and 6 are shown. Players’ actions are described by dots, the width of which corresponds to one second of time. Groups 1-10 correspond to the strategic treatment
for two-player groups; groups 11-20 are the corresponding control treatments. Groups 21-30 played the strategic treatment for three-player groups, while groups 31-40
were the corresponding control treatments. In each group, we refer to the lowermost player as ‘player 1’, while ‘player 2’ will denote the player right above, and ‘player 3’ is
the uppermost player. The x-axis represents calendar time. A red dot indicates that a player is playing risky in a given second, while a blue dot indicates that the player is
playing safe. A black square indicates a success.



Figure 2: Action Choices by Players over Time, Games 2 & 3

Games 2 and 3 are shown. Players’ actions are described by dots, the width of which corresponds to one second of time. Groups 1-10 correspond to the strategic treatment
for two-player groups; groups 11-20 are the corresponding control treatments. Groups 21-30 played the strategic treatment for three-player groups, while groups 31-40
were the corresponding control treatments. In each group, we refer to the lowermost player as ‘player 1’, while ‘player 2’ will denote the player right above, and ‘player 3’ is
the uppermost player. The x-axis represents calendar time. A red dot indicates that a player is playing risky in a given second, while a blue dot indicates that the player is
playing safe. A black square indicates a success.



Figure 3: Action Choices by Players over Time, Games 4 & 5

Games 4 and 5 are shown. Players’ actions are described by dots, the width of which corresponds to one second of time. Groups 1-10 correspond to the strategic treatment
for two-player groups; groups 11-20 are the corresponding control treatments. Groups 21-30 played the strategic treatment for three-player groups, while groups 31-40
were the corresponding control treatments. In each group, we refer to the lowermost player as ‘player 1’, while ‘player 2’ will denote the player right above, and ‘player 3’ is
the uppermost player. The x-axis represents calendar time. A red dot indicates that a player is playing risky in a given second, while a blue dot indicates that the player is
playing safe. A black square indicates a success.



5.2 Average Experimentation Intensities
One of the main qualitative predictions of the theoretical analysis is that players will tend
to free-ride on the experimentation provided by their partners. To test for treatment differ-
ences non-parametrically, we apply two-sided Wilcoxon rank-sum (Mann-Whitney) tests,
using group averages as independent observations. Table 1 lists the mean experimentation
intensity observed in our four treatments.

Table 1: Average Experimentation Intensity

Strategic Treatment Control Treatment

Group Obs. Experiment. Obs. Experiment.
Size Intensity Intensity

𝑛 = 2 60 .594 [.186] 60 .818 [.212]
𝑛 = 3 60 .539 [.244] 60 .839 [.180]

Average [st. dev.] experimentation intensity using group averages.

As Table 1 reveals, the additional presence of one (two) perfectly positively correlated
arms leads to lower experimentation intensities in all games. This is highly statistically
significant in both settings with 𝑛 = 2 and 𝑛 = 3. The corresponding p-values in both cases
are 0.0001.12

Under Hypothesis 1, players will use the risky arm less in the strategic treatment. The
data provides support for this hypothesis.

Result 1. Theaverage experimentation intensity ∫
�̂�
0 ∑
𝑛
𝑖=1 𝑘𝑖,𝑡 𝑑𝑡
𝑛�̂� is significantly lower in the strate-

gic treatment, as compared to the control treatment. This result holds for both 𝑛 = 2 and
𝑛 = 3.

As we have mentioned above, information accumulation is potentially faster in the
strategic treatment. Indeed, on account of the conditionally independent Poisson pro-
cesses, the information acquired within a given unit of time is proportional to the number
of players currently playing risky. Therefore, conditionally on no success arriving, players’
beliefs will tend to decrease more quickly in the strategic setting, implying that more time
will be spent at more pessimistic beliefs. To ensure that Result 1 is not solely due to this
effect, we conduct our parameter tests separately by belief region. Specifically, we consider
the belief regions [ ̄𝑝, 12], where risky is a dominant action, and (𝑝∗1 , 𝑝‡), where risky and
safe are mutually best responses in MPE.13 In the control treatment or if players were be-

12TheWilcoxon ranksum test treats group averages as independent observations. Yet, onemight argue that
players’ action choices are not independent across subsequent games they play. As a robustness check, we
additionally conduct a Wilcoxon test where we also average over all games for each group, thus yielding one
independent data point across all games for each group of interacting subjects. The corresponding p-values
for 𝑛 = 2 (𝑛 = 3) are 0.0019 (0.0012).

13Besides the beliefs ( 12 , 1], which can never be reached in the absence of a success, the complementary set
of these beliefs thus consists of the region [0, 𝑝∗1 ], where safe is a dominant action, and the (small) interval
of beliefs [𝑝‡, ̄𝑝), which we have not assigned to either region. Indeed, as we explain in Section 4, we rely on
conservative bounds in defining the “R dominant”and “Mutually BR” regions.
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having according to the best PBE in the strategic setting, by contrast, all players should play
risky in both regions. The following table (2) summarizes our findings by belief region.

As player 2 has a success after 9 seconds of using the risky arm, we omit Game 6 from
these tables. We furthermore omit Game 5 from the tables for the “mutually BR” region, as
this game lasts only 32 seconds, implying that the “mutually BR” region cannot be attained
in the control treatment and only lasts for a few seconds in the strategic treatment, if it
is attained at all. For Games 1-4, the missing observation for the “mutually BR” region
corresponds to one three-player group in the control treatment that has not reached the
“mutually BR” region.14

Table 2: Average Experimentation Intensity, by Belief Regions

Strategic Treatment Control Treatment

Group Belief Obs. Experiment. Obs. Experiment.
Size Region Intensity Intensity

𝑛 = 2 R dominant 50 .675 [.222] 50 .899[.161]
𝑛 = 2 Mutually BR 40 .505 [.155] 40 .776 [.311]
𝑛 = 3 R dominant 50 .632 [.281] 50 .932 [.152]
𝑛 = 3 Mutually BR 40 .510 [.220] 39 .779 [.090]

Average [st. dev.] experimentation intensity using group averages.

The comparison of the strategic treatment with the control treatment shows that the
average experimentation intensity is substantially lower in the strategic treatment, for both
belief regions. The effect is statistically significant at the 1%-level for both belief regions,
independently of group size, the p-values of the two-sidedWilcoxon ranksum test amount-
ing to 0.0001. These results provide strong evidence that players are free-riding because of
strategic considerations. Indeed, the information they provide in the strategic treatment
is a public good; hence, they will provide too little of it. By contrast, the information they
produce in the control treatment is a private good.

We now test whether players behave differently by belief region within a given regime.
Recall that they should play risky in both in the control treatment. In the strategic treat-
ment, however, while subjects should always play risky in the “R dominant” region, we
should observe less risky play in the “Mutually BR” region, if they play MPE, and no dif-
ference if they play the best PBE. Our analysis shows that, in the strategic treatment for
groups of 𝑛 = 2, the average experimentation intensity is statistically significantly higher
in the “R dominant”-region, with a p-value of 0.0001. In the corresponding control treat-
ment, the difference is not statistically significant (p-value of 0.1088). In the setting with
𝑛 = 3, while players tend to use the risky arm less in the “mutually BR” region than in
the “R dominant” region, statistically no such effect can be established (p-value of 0.1296).

14In the control treatment, only some players of a given group may reach the “Mutually BR” region. We
continue to include these groups in our data, without weighting the corresponding observations down. If
we weighted groups in the “Mutually BR” region by the number of their members, average experimentation
intensities would increase even further for both 𝑛 = 2 and 𝑛 = 3.
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Thus, the contrast to groups of 𝑛 = 2 would suggest that MPE-type behavior was more
prevalent for the smaller group size.15 The introduction of an additional player may have
increased the complexity of coordination required, or subjects may not have been able to
update their subjective beliefs with enough precision any longer to tell the regions apart.
Overall, however, as far as free-riding is concerned, there do not seem to be any major
differences between groups of size two and groups of size three.

5.3 Payoffs
Strategic interaction is predicted to arise among players as a result of (positive) informa-
tional externalities, i.e., the information produced by their partners allows players to make
better decisions and hence to secure themselves higher payoffs. Thus, players’ payoffs
should be higher on average in the strategic treatment.

Table 3: Average Final Payoffs

Strategic Treatment Control Treatment

Group Obs. Final Min Max Obs. Final Min Max
Size Payoffs Payoffs

𝑛 = 2 60 1235.50 [1235.11] 0.00 3945.00 60 1030.75 [1272.16] 0.00 3870.00
𝑛 = 3 60 1420.28 [1045.41] 0.00 3363.33 60 981.22 [904.08] 0.00 2860

Average final payoffs using group averages.

Table 3 displays the average final payoffs using group averages across games for our
four treatments. Average final payoffs are much higher in the strategic treatment than in
the control treatment, for both group sizes. This is statistically significant. For 𝑛 = 2
(𝑛 = 3), the corresponding p-values are 0.0674 (0.0001). Thus, our subjects indeed take
advantage of the positive informational externalities in the strategic treatment, giving us

Result 2. Players’ average final payoffs are higher in the strategic treatment, for both group
sizes.

5.4 Eye-Tracking Data
As we have seen in the previous subsection, subjects’ payoffs were markedly higher in the
strategic treatment, which suggests that they were indeed able to take advantage of the
positive informational externality. To study the players’ information-acquisition processes
further, we employ eye-tracking data obtained by using two (three) Tobii-TX300 eye track-
ers with a sampling rate of 300 Hz. The relative frequency of fixations corresponds to the
relative importance of an information in the subject’s decision-making process (Jacob and
Karn 2003, Poole, Ball, and Phillips 2005). In our setting, eye fixations can thus provide
information about the importance subjects assigned to the different payoff streams, which

15 In the control treatment for 𝑛 = 3, however, the difference between the belief regions is significant
(p-value of 0.0005), for which there is no theoretical rationale.
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revealed both a player’s actions and payoffs.16 We define a subject’s fixation intensity as
the total number of fixations on his own payoff stream, divided by the total number of all
fixations (i.e., both on his own and on his partner’s [partners’] payoff stream[s]) during a
game before a breakthrough arrives or the game ends.

Table 4: Average Fixation Intensity

Strategic Treatment Control Treatment

Group Obs. Fixation Obs. Fixation
Size Intensity Intensity

𝑛 = 2 60 .614 [.087] 60 .865 [.090]
𝑛 = 3 60 .383 [.078] 60 .712 [.106]

Average [st. dev.] fixation intensity using group averages.

As Table 4 shows, the average fixation intensity is significantly lower in the strategic
treatment. This is highly statistically significant for both group sizes (both p-values are
0.0001 for 𝑛 = 2 and 𝑛 = 3). The sophisticated coordination required by the switching of
roles between pioneer and free-rider, which is characteristic of MPE and which we shall
analyze in detail below, seems to force players to pay a lot of attention to their partner’s
(partners’) behavior. This provides additional evidence that players behave strategically
and try to learn from their partners’ exploration efforts in the strategic treatments only.
Furthermore, these results also indicate that subjects did indeed understand the simple,
non-strategic, nature of the control treatment.

5.5 Cut-Off Behavior
As we have pointed out above, optimality in the individual decision-making problem in
our control treatment implies cut-off behavior. The best PBE also features cut-off behavior
on the path of play, while KRC have shown that there does not exist an MPE in cut-off
strategies. This prediction of MPE is confirmed by our experiment, where subjects often
play cut-off strategies in the control treatment, while they hardly ever do so in the strategic
treatment. As it is not clear what it means for a group to engage in cut-off behaviour, we
report each individual subject’s decisions.

Result 3. The frequency of cut-off behavior is higher in the control treatment than in the
strategic treatment. We find evidence for both 𝑛 = 2 and 𝑛 = 3.

Indeed, Table 5 shows that the frequency of cut-off behavior is much higher in the con-
trol treatment than in the strategic treatment for both groups of size 𝑛 = 2 and groups of
size 𝑛 = 3. The difference is statistically significant, yielding p-values of 0.0001 in both set-
tings. When, in the strategic set-up, one excludes Games 5 and 6, which are characterized
by either a short duration (Game 5 lasted only 32 seconds) or a resolution of uncertainty
that occurs very early in the game (with Player 2 achieving a success after exploring for 9

16Video recordings illustrating the use of the eye-tracking devices are available at the author’s website:
www.johanneshoelzemann.com.
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Table 5: Average Frequency of Cut-Off Behavior

Strategic Treatment Control Treatment

Group Obs. Total (Relative) Obs. Total (Relative)
Size Frequency Frequency

𝑛 = 2 120 35 (.292) 120 100 (.833)
𝑛 = 3 180 59 (.328) 180 142 (.789)

Total number of cut-offs (number of cut-offs divided by total observations).

seconds in Game 6), the total number of cut-offs drops to 5 (23) out of 120 (180) for 𝑛 = 2
(𝑛 = 3).

5.6 Pioneers
In the control treatment as well as in the best PBE, players are predicted to play risky on
(𝑝∗1 , 12]; i.e., conditionally on no success arriving, players should switch from risky to safe
only once, and do so at the same time, at which their beliefs reach 𝑝∗1 . By contrast, as
KRC have shown, there is a range of beliefs containing (𝑝∗1 , 𝑝‡) such that safe and risky are
mutually best responses in any Markov Perfect Equilibrium. In particular, there exists a
range of beliefs in which just one pioneer should play risky while the other player(s) free-
ride(s). The following result thus provides further evidence that MPE seems to predict the
qualitative features of subjects’ behavior better, while confirming the prevalence of free-
riding in our strategic treatment.

Result 4. The proportion of time before a first breakthrough during which exactly one player
plays risky is higher in the strategic treatment than in the control treatment.

Table 6 shows the average proportion of time during which exactly one player is explor-
ing before a first breakthrough by any player in his group. It is more than three times as
large in the strategic treatment and highly statistically significant with p-values of 0.0001
for both 𝑛 = 2 and 𝑛 = 3.

Table 6: Proportion of Time with a Single Pioneer

Strategic Treatment Control Treatment

Group Obs. Single Obs. Single
Size Pioneer Pioneer

𝑛 = 2 60 .634 [.298] 60 .198 [.244]
𝑛 = 3 60 .497 [.338] 60 .080 [.168]

Average [st. dev.] proportion of time with a single pioneer in a group.
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5.7 Switches of Action
Cut-off behavior implies at most a single switch of action from risky to safe per player in
a given game. However, players should switch roles at least once in any Markov Perfect
Equilibrium. Hence, if players’ behavior is predicted by MPE, we should expect signifi-
cantly more switches in the strategic treatment. Recall that we have defined the incidence
of switches as the number of a player’s changes in action choice in a given game per unit of
effective time, defined as the time elapsed before the game ends or the player’s risky arm is
revealed to be good, whichever happens first.

Result 5. The incidence of switches is significantly higher in the strategic treatment than in
the control treatment. This holds for both 𝑛 = 2 and 𝑛 = 3.

Table 7 displays the average number of switches per player across games for our four
treatments.17 The incidence of switches in the strategic treatment is much higher than in
the control treatment for both 𝑛 = 2 and 𝑛 = 3 (both p-values of 0.0001).

Table 7: Average Number of Switches per Player

Strategic Treatment Control Treatment

Group Obs. Switches Obs. Switches
Size per Player per Player

𝑛 = 2 60 3.067 [2.450] 60 .792 [1.063]
𝑛 = 3 60 2.261 [2.040] 60 .778 [1.080]

Average [st. dev.] switches of players using group averages.

5.8 Groups of 𝑛 = 2 vs. 𝑛 = 3
Thetask of coordinating among larger groups ismore challenging. Indeed, our eye-tracking
data (see Table 4) shows that players pay significantly more attention to coordinating with
their partners if 𝑛 = 3 (p-value of 0.0001). In addition, our following result shows that
evidence for the more complex forms of coordination required by MPE is significantly
stronger for 𝑛 = 2 than for 𝑛 = 3.

Result 6. The incidence of switches and the frequency of single pioneers are higher, while
cut-off behavior is significantly less frequent, in the strategic treatment for 𝑛 = 2 than for
𝑛 = 3.

The corresponding p-values are 0.2237, 0.0252, and 0.5096 for the average incidence of
switches per player, for the proportion of time with a single pioneer, and the average fre-
quency of cut-off behavior, respectively. Thus, the effect is statistically significant only with
respect to the frequency of single pioneers. If we omit Games 5 and 6 (arguably outliers
on account of their short length and the very early success, respectively), the difference in

17We report the average number, rather than the average incidence, of switches in Table 7, as the former
may be easier to interpret.
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cut-off behavior is highly significant as well (𝑝-value of 0.0101).18 Thus, while overall our
subjects’ behavior seems qualitatively to be best described by MPE play, the evidence for
this conclusion is stronger for groups of size 𝑛 = 2 than for 𝑛 = 3. This may suggest that
the complexity of the elaborate coordination required for MPE play increases quickly with
group size.

6 Conclusion
We have analyzed a problem of dynamic public-good provision, where the public good
in question is information about an uncertain state of the world. In particular, a group
of several agents was facing the same decision problem, in which the optimal course of
action depended on an unknown state of the world, which, in the strategic treatment, was
common to everyone in the group. Therefore, the information produced by one agent
benefited the other groupmember(s) aswell. This informational externality constituted the
only strategic link across players. Information, and hence agents’ contribution incentives,
evolve as the game progresses. We compare subjects’ behavior in this strategic treatment
to the behavior of subjects in the control treatment, where each agent’s individual state of
the world was iid, and there were therefore no strategic links across group members.

In a first step, we have exhibited strong evidence for strategic free-riding, as experimen-
tation intensities are lower, and payoffs higher, in the strategic setting. Our eye-tracking
data furthermore suggest that, in the strategic setting, subjects were paying keen attention
to their partners’ exploration efforts. Moreover, subjects seem to attempt to coordinate
in rather complex ways, as evidenced, inter alia, by the much lower incidence of cut-off
behavior and the higher incidence of switches in the strategic setting. This, together with
the greater prevalence of single pioneers, suggests that the qualitative aspects of subjects’
behavior ismore accurately predicted by KRC’sMarkov Perfect Equilibrium than byHKR’s
average-payoff maximizing Perfect Bayesian Equilibrium, as Table 8 summarizes. As we
have seen in Result 6, this is particularly apparent in the two-player setting. Ours being
a rather complex game, we of course cannot conclusively prove that subjects play, or aim
to play, an MPE, as it is impossible to rule out other, more heuristic, forms of behavior.
Yet, we believe that our results provide at least suggestive evidence for the main qualitative
behavioral predictions of KRC’s simple MPE.

Table 8: Hypotheses, by Equilibrium Concept

MPE PBE
H3

√ ×
H4

√ ×
H5

√ ×

KRC have also shown that there is a unique symmetric MPE in this game, which is
characterized by players’ using both arms at interior levels of intensity in the belief region

18If we analyzed the number, rather than the incidence of switches, the difference would be significant at
the 10%-level (𝑝-value of 0.0771).
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where safe and risky are mutually best responses. In our experimental implementation, we
do not allow subjects to pick experimentation intensities 𝑘𝑖 ∈ (0, 1). While one could in
principle imagine an experimental set-up that does this (e.g., by letting subjects handle a
gas pedal or a joystick), we have decided against doing so here in order to keep the already
highly complex game as simple as possible for our subjects. Yet we think that allowing for
interior experimentation intensities would be an interesting robustness check to perform
in future research.

Recall that each of our subject groups played the six games in random order. As a ro-
bustness check, we also ran our analysis using only the first games played by each group.
While this implies the loss of a large amount of data, and hence statistical power, our quali-
tative conclusions remain unaltered, although a few of our effects are no longer statistically
significant.

As a further robustness check, one could in principle show subjects the current updated
belief on their screens, in order to separate the task of belief updating from that of deter-
mining the cut-offs. We have decided against doing so here, as we were concerned about
prodding subjects toward certain behaviors, which would have made the interpretation of
our results more difficult.

We have confined our analysis to the exponential-bandit setting of KRC. While the
tractability of the exponential-bandit setting will certainly have facilitated its experimental
implementation, the model does have some special features. For instance, as successes are
fully revealing, there is no encouragement effect in KRC, which our experimental investi-
gation confirms.19 Indeed, we can compute the average experimentation intensities in the
region where safe is a dominant action, [0, 𝑝∗1 ], for Game 4 as well as for the two-player
groups in Game 2.20 Even in this region, the average experimentation intensity is lower
in the strategic treatment: .511 [.042] in the strategic treatment for Game 4 with 𝑛 = 2 vs.
.655 [.237] in the control treatment; .325 [.091] vs. .756 [.220] in Game 4 for 𝑛 = 3, and
.511 [.063] vs. .696 [.251] in Game 2, where we report the standard deviation in square
brackets. By contrast, if there were an encouragement effect, we should expect higher ex-
perimentation intensities in the strategic treatment for this belief region.

It might be interesting to test whether the encouragement effect can be shown in the
laboratory for settings in which the theory would predict it to arise. This would be the
case for instance in the Poisson setting with inconclusive breakthroughs à la Keller and
Rady (2010), or in the Brownian-motion setting of Bolton and Harris (1999). It would
also be intriguing to try and test the impact of privately observed actions or payoffs in the
laboratory. We commend these questions for future research.

19The encouragement effect has been identified by Bolton and Harris (1999) and is not predicted to arise
in the KRC setting. By virtue of this effect, players experiment more than if they were by themselves. They
do so in the hope of producing public good news, which, in turn, makes their partners more optimistic.
As their partners become more optimistic, they will be more inclined to experiment, thus providing some
additional free-riding opportunities to the first player. This effect is absent in KRC, because here good news
is conclusive: It resolves all uncertainty, so that, as soon as there is good news, players are not interested in
free-riding any longer.

20These are the only settings in which this region is reached (and lasts for more than a few seconds) for
both the strategic and the control treatments.
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