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Abstract

We analyze a two-player game of strategic experimentation with two-armed bandits.
Either player has to decide in continuous time whether to use a safe arm with a known
payoff or a risky arm whose expected payoff per unit of time is initially unknown. This
payoff can be high or low, and is negatively correlated across players. We characterize
the set of all Markov perfect equilibria in the benchmark case where the risky arms
are known to be of opposite type, and construct equilibria in cutoff strategies for
arbitrary negative correlation. All strategies and payoffs are in closed form. In marked
contrast to the case where both risky arms are of the same type, there always exists
an equilibrium in cutoff strategies, and there always exists an equilibrium exhibiting
efficient long-run patterns of learning. These results extend to a three-player game
with common knowledge that exactly one risky arm is of the high payoff type.
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1 Introduction

Starting with Rothschild (1974), two-armed bandit models have been used extensively in

economics to formalize the trade-off between experimentation and exploitation in dynamic

decision problems with learning; see Bergemann and Välimäki (2008) for a survey of this

literature. The use of the two-armed bandit framework as a canonical model of strategic

experimentation in teams is more recent: Bolton and Harris (1999, 2000) analyze the case

of Brownian motion bandits, while Keller, Rady and Cripps (2005) and Keller and Rady

(2010) analyze bandits where payoffs are governed by Poisson processes. These papers

assume perfect positive correlation of the quality of the risky arm across players; all risky

arms generate the same unknown expected payoff per unit of time, so what is good news to

any given player is good news for everybody else.

There are many situations, however, where one man’s boon is the other one’s bane.

Think of a suit at law, for instance: whatever is good news for one party tends to be bad

news for the other. Or consider two firms pursuing research and development under different,

incompatible working hypotheses. One pharmaceutical company, for example, might base

its drug development strategy on the hypothesis that the cause of a particular disease is a

virus, while the other might see a bacterium as the cause. An appropriate model of strategic

experimentation in such a situation must assume negative correlation of the quality of the

risky arm across players. This we propose to do in the present paper.

There are two players in our model, either one facing a continuous-time exponential

bandit as in Keller, Rady and Cripps (2005). One arm is safe, generating a known payoff per

unit of time. The other arm is risky, and can be good or bad. If it is good, it generates lump-

sum payoffs after exponentially distributed random times; if it is bad, it never generates any

payoff. A good risky arm dominates the safe one in terms of expected payoffs per unit of

time, whereas the safe arm dominates a bad risky one. At the start of the game, the players

hold a common belief about the types of the two risky arms. Either player’s actions and

payoffs are perfectly observable to the other player, so any information that a player garners

via experimentation with the risky arm is a public good, and the players’ posterior beliefs

agree at all times.

We first analyze the case of perfect negative correlation, where it is common knowledge

that exactly one risky arm is good. In a lawsuit, for example, this means that there exists

conclusive evidence for one side which, once found, will decide the case in its favor; in the

example of drug development, it means that one of the two mutually exclusive hypotheses

will turn out to be true if explored long enough. The dynamics of posterior beliefs are easy

to describe in this case. If both players play safe, no new information is generated and
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beliefs stay unchanged. If only one player plays risky and he has no success, the posterior

probability that his risky arm is the good one falls gradually over time; if he obtains a lump-

sum payoff, all uncertainty is resolved and beliefs become degenerate at the true state of the

world. If both players play risky, finally, and there is no success on either arm, this is again

uninformative about the state of the world, so beliefs are constant up to the random time

when the first success occurs. It is important to note that a success on one player’s risky

arm is always bad news for the other player, while lack of success gradually makes the other

player more optimistic.

We restrict players to stationary Markov strategies with the common posterior belief

as the state variable. As is well known, this restriction is without loss of generality in the

decision problem of a single agent experimenting in isolation: his optimal policy is given

by a cutoff strategy, i.e. has him play risky at beliefs more optimistic than some threshold,

and safe otherwise. The same structure prevails in the optimization problem of a utilitarian

planner who maximizes the average of the two players’ expected discounted payoffs. In the

non-cooperative experimentation game, the Markov restriction rules out history-dependent

behavior that is familiar from the analysis of infinitely repeated games in discrete time,

yet technically quite difficult to formalize in continuous time (Simon and Stinchcombe 1989,

Bergin 1992, Bergin and McLeod 1993). Imposing Markov perfection allows us to focus on the

experimentation tradeoff that the players face and makes our results directly comparable to

those in the previous literature on strategic experimentation in bandits. Moreover, a simple

numerical evaluation of average payoffs suggests that Markov perfect equilibria are able to

capture a surprisingly high fraction of the welfare gain that the planner’s solution achieves

relative to the safe payoff level.

The implementation of the Markov restriction needs some care in our setting because

the incremental drift in beliefs can change direction as the action profile changes, which may

lead to a differential equation for the state variable that possesses no, two, or a continuum

of solutions. In contrast to Keller, Rady and Cripps (2005), where the drift always has

the same sign, this problem cannot be remedied by the imposition of one-sided continuity

requirements and arises even if both players use cutoff strategies. It is therefore impossible to

define the set of a player’s admissible strategies without reference to his opponent’s strategy.1

We confront this problem by calling a pair of strategies admissible if there exists at least

one well-defined solution to the corresponding law of motion of our state variable. If there

are several solutions, we select the one that can be obtained as the limit of a discrete-time

approximation. We set both players’ payoffs to minus infinity on any strategy profile that

1More generally, this problem arises whenever the types of the two risky arms are neither independent
nor perfectly positively correlated. We will see this in the case of imperfect negative correlation below; cf.
the proof of Proposition 11. For the case of imperfect positive correlation, see our concluding remarks.
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is not admissible. A best response to the opponent’s strategy thus necessarily leads to

well-defined dynamics of beliefs and actions.

Before turning to the Markov perfect equilibria of the experimentation game with perfect

negative correlation, we characterize efficient behavior by solving the planner’s optimization

problem. When stakes (as measured by the payoff advantage of a good risky arm over a safe

one) are so low that there exist beliefs at which both players are below their single-agent

optimal thresholds, it is optimal for the planner to let either player apply his respective

single-agent threshold, so that they both behave as if they were experimenting on their own.

In particular, the planner stops all learning once the belief is in the range where both players

are below their single-agent cutoffs. This is efficient because experimentation on player 1’s

bandit, say, can never make the belief jump into a region where experimentation on player

2’s bandit became profitable. When stakes are higher, there exist beliefs at which both

players are above their single-agent cutoffs, and it is optimal for the planner to have both

players simultaneously use the risky arm at some beliefs. In this case, learning is complete,

meaning that posterior beliefs converge to the truth almost surely.

As our first main result, we show that there always exists an equilibrium where both

players use a cutoff strategy. Suppose for example that player 2 follows a cutoff strategy

and player 1’s best response has him play risky at a given belief. Then player 1’s learning

benefit from doing so must outweigh the opportunity costs. At more optimistic beliefs, the

opportunity costs of playing risky are even lower while the learning benefit is at least as high

because the opponent provides either the same amount of free information or less. It must

therefore be optimal for player 1 to play risky at more optimistic beliefs as well, and so he

must be playing a cutoff strategy himself.

If player 1’s optimal cutoff lies in the region where player 2 is playing safe, it must

coincide with the single-agent cutoff because the tradeoff faced by player 1 is exactly the

same as that faced by an agent experimenting in isolation. If player 1’s optimal cutoff lies in

the region where player 2 is playing risky, it must be the same as that applied by a myopic

agent who is just interested in the maximization of current payoffs. Indeed, when player 1

joins player 2 in playing risky, he freezes beliefs and actions until the random time when

the first breakthrough resolves all uncertainty, and his total expected payoff is linear in the

probabilities that he assigns to the two possible states of the world. If player 1 were now

offered the possibility of observing, for a short time interval and at no cost, the payoffs

generated by a replica of his own risky arm, he would be indifferent to the offer because

the resulting mean-preserving spread in beliefs would leave his expected continuation payoff

unchanged. Player 1 thus assigns zero value to the information he gathers when playing
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risky, so his decision to use the risky arm must maximize current payoffs.2

As the myopic cutoff belief is more optimistic than the single-agent cutoff, we obtain

three cases. When stakes are so low that there exist beliefs at which both players are below

their single-agent cutoffs, the unique equilibrium in cutoff strategies is for both players to

behave as if they were single agents. When stakes are so high that there exist beliefs at which

both players are above their myopic cutoffs, the unique equilibrium in cutoff strategies is

for both players to behave as if they were myopic. When stakes are intermediate in size,

finally, there exist beliefs at which either player finds himself in between his single-agent and

his myopic cutoff, and thus optimally plays risky if the opponent plays safe, and safe if the

opponent plays risky. Each such belief can then serve as the common threshold in an MPE

in cutoff strategies.

Our second contribution is a complete characterization of all Markov perfect equilibria of

the two-player game with perfect negative correlation. For low and high stakes, respectively,

the cutoff equilibrium just described is the unique MPE. We prove this by characterizing the

changes in the players’ action profile that may occur in equilibrium, and the beliefs at which

they may occur. Given that the players have dominant actions near subjective certainty (the

player who is very optimistic about his risky arm uses it, the other one plays safe), the proof

reduces to showing that as we vary the belief from one extreme of the state space to the

other, the respective cutoff equilibrium provides the only way for the players to transition

from one profile of dominant actions to the other.

For intermediate stakes, there exist equilibria that are not in cutoff strategies. Over the

range of beliefs where either player’s best response is to play the opposite of his opponent’s

action, it is possible for them to swap roles finitely often. Using the same approach as for low

and high stakes, we characterize the set of all equilibria and show that in every MPE that is

not in cutoff strategies, the players’ payoff functions necessarily have jump discontinuities.

These arise at each belief where players swap roles in a way that implies locally divergent

belief dynamics. Priors arbitrarily close to each other, but on different sides of such a belief

lead to very different paths of beliefs and actions, and hence to payoffs that are bounded

away from each other.

The third main result of the paper concerns the asymptotics of learning. In any MPE

of the two-player game with perfect negative correlation, the probability of learning the

true state in the long run is the same as in the planner’s solution. For low stakes, there is

nothing to show because the unique equilibrium coincides with the planner’s solution. For

2Intuitively, players cannot assign a negative value to public information when, as in the present model,
the only strategic link between them is a positive informational externality. They can do so when they also
exert a payoff externality on each other; see for example Harrington (1995) or Keller and Rady (2003).
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intermediate and high stakes, free-riding leads to an inefficiently small set of beliefs where

both players use the risky arm, yet learning is nevertheless complete in equilibrium, exactly

as the planner would have it. The intuition is straightforward. If players hold common

beliefs and there is perfect negative correlation between the types of the risky arms, it can

never be the case that both players are simultaneously very pessimistic about their respective

prospects; with stakes sufficiently high, this implies that at least one player must be using

the risky arm at any time, and so learning never stops. Thus, whenever society places a lot

of emphasis on uncovering the truth, as one may argue is the case with medical research or

the justice system, our analysis would suggest an adversarial setup was able to achieve this

goal.3

The existence of equilibria in cutoff strategies, the uniqueness of equilibrium for low and

high stakes, and the efficiency of long-run learning outcomes stand in stark contrast to the

case of perfect positive correlation analyzed in Keller, Rady and Cripps (2005). First, there is

no equilibrium in cutoff strategies when all risky arms are of the same type. It is easy to see

where the intuition given above fails. If player 2 follows a cutoff strategy and player 1’s best

response has him play risky at a given belief, then the learning benefit at more optimistic

beliefs can be lower because the opponent may provide more free information there. So

free-riding on this information may be the better choice.4 Second, the experimentation

game with identical risky arms admits a continuum of equilibria irrespective of the size

of the stakes involved. As the evolution of beliefs is determined by the total number of

risky arms used at a given time, one and the same equilibrium pattern of information can

in fact be generated via many different assignments of the roles of experimenter and free-

rider, respectively. Moreover, there is multiplicity with respect to these equilibrium patterns,

yielding a continuum of average payoff functions. Third, with experimentation stopping too

early, any MPE entails an inefficiently high probability of incomplete learning.

When the quality of the risky arm is perfectly negatively correlated across players, one

side’s failure to produce evidence in its favor means that the other side is more likely to do

so. However, in a lawsuit, for instance, there might not exist one single conclusive piece of

evidence which settled the case once and for all; in the drug development example, the disease

in question might be caused by a genetic defect rather than a virus or a bacterium. In a

second step, therefore, we extend the model to imperfect negative correlation by introducing

a third state of the world in which both risky arms are bad. When one side fails to produce

evidence in its favor, the increase in the other side’s individual optimism is now tempered

3Dewatripont and Tirole (1999) reach a similar conclusion in a moral hazard setting.
4More precisely, Keller, Rady and Cripps (2005) show that with two players, the player who is supposed

to use the least optimistic cutoff in a purported MPE in cutoff strategies always has an incentive to deviate
to the safe action at the other player’s cutoff belief.

5



by an increase in collective pessimism, that is, an increase in the posterior probability that

both sides will remain unsuccessful.

With three states of the world, beliefs are elements of a two-dimensional simplex, and

the players’ payoff functions solve linear partial differential equations. Given a fixed action

profile, the trajectories of beliefs conditional on no breakthrough are straight lines in the

simplex. Along each such line, we can represent the corresponding payoff function in closed

form up to a constant of integration that varies with the slope of the line.

The fourth contribution of the paper is to show constructively that the game with

imperfect negative correlation always admits an equilibrium in cutoff strategies, and to

provide explicit representations for the players’ strategies and payoff functions. As there is

now a dimension of collective pessimism, the probability that learning remains incomplete

in the long run is always positive. In the equilibria that we construct, this probability is the

same as in the planner’s solution.

These insights carry over to a game with three players and common knowledge that

exactly one of them has a good risky arm. Again, there always exists an equilibrium in cutoff

strategies, and the resulting asymptotics of learning are the same as in the planner’s solution.

Moreover, two of our findings for the two-player game with perfect negative correlation

generalize to an arbitrary number of players: for sufficiently small stakes, players behave as

if they were single agents experimenting in isolation, which is efficient; and learning will be

complete in equilibrium if and only if efficiency requires complete learning.

The related literature on strategic experimentation with publicly observable actions and

outcomes has already been addressed. Rosenberg, Solan and Vieille (2007) and Murto and

Välimäki (2009) study strategic experimentation with two-armed bandits where the players’

actions are publicly observable, but their payoffs are private information. These authors

assume that the decision to stop playing risky is irreversible. In our model, players can

freely switch back and forth between the two arms. Bonatti and Hörner (2010) study a

model with private actions and publicly observable outcomes. Yet, theirs is more a model of

moral hazard in teams than an experimentation model, implying, inter alia, that no player

will ever play risky below his myopic cutoff.

There is a decision-theoretic literature on correlated bandits which analyzes correlation

across different arms of a bandit operated by a single agent; see e.g. Camargo (2007) for a

recent contribution to this literature, or Pastorino (2005) for economic applications. Our

focus here is quite different, though, in that we are concerned with correlation between

different bandits operated by two or more players who interact strategically.

Chatterjee and Evans (2004) analyze an R&D race with two firms and two projects in
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which it is common knowledge that exactly one of these projects will bear fruit if pursued

long enough, and actions and payoffs are observable. Their discrete-time model differs from

ours in several respects, chief of which is the payoff externality implied by the firms’ choices.

In our model, there is no payoff rivalry between players – strategic interaction arises out

of purely informational concerns. Moreover, Chatterjee and Evans allow firms to change

their projects at any time, so that it is possible for them to explore the same project. Our

analysis, by contrast, presumes that projects of opposite type have been irrevocably assigned

to players at the start of the experimentation game.5 Finally, we allow for imperfect negative

correlation between project types.

The rest of the paper is structured as follows. Section 2 introduces the game with

two players and perfect negative correlation between the types of their risky arms. Section

3 solves the planner’s problem. Section 4 characterizes the Markov perfect equilibria of

the non-cooperative game, compares their learning outcomes and average payoffs to the

planner’s solution, and discusses robustness to the introduction of interior intensities of

experimentation, asymmetries between the two players and news events that are not fully

revealing. Section 5 constructs equilibria in the version of the game where the negative

correlation between the types of the two players’ risky arms is imperfect. Section 6 extends

the model to three or more players. Section 7 concludes. Appendix A contains auxiliary

results on payoff functions. Appendix B characterizes admissible strategy pairs in the game

with perfect negative correlation. Most proofs are provided in Appendix C.

2 The Model

There are two players, 1 and 2, either one of whom faces a two-armed bandit problem in

continuous time. Bandits are of the exponential type studied in Keller, Rady and Cripps

(2005). One arm is safe in that it yields a known payoff flow of s; the other arm is risky in

that it is either good or bad. If it is bad, it never yields any payoff; if it is good, it yields a

lump-sum payoff with probability λdt when used over a length of time dt.6 Let g dt denote

the corresponding expected payoff increment; thus, g is the product of the arrival rate λ

and the average size of a lump-sum payoff. To have an interesting problem, we assume that

the expected payoff of a good risky arm exceeds that of the safe arm, whereas the safe arm

5In the concluding remarks, we briefly report on an extension of our model in which players are given a
sequential once-and-for-all choice of bandit prior to the experimentation game.

6The assumption of a common arrival rate of successes on a good risky arm is crucial to the analytic
tractability of the model, while asymmetries in the other parameters are straightforward to accommodate;
see the discussion in Section 4.6 below.
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is better than a bad risky arm, i.e. g > s > 0. The time-invariant constants λ > 0 and

g > 0 are common knowledge. Throughout Sections 2–4, we will further assume common

knowledge that exactly one bandit’s risky arm is good.

Player i = 1, 2 chooses actions {ki,t}t≥0 such that ki,t ∈ {0, 1} is measurable with

respect to the information available at time t, with ki,t = 1 indicating use of the risky

arm, and ki,t = 0 use of the safe arm. At the outset of the game, the players hold a

common prior belief about which of the risky arms is good, given by the probabilities with

which nature allocates the good risky arm to either player. Throughout the game, players

perfectly observe each other’s actions and payoffs, and so share a common posterior belief at

all times. We write pt for the players’ probability assessment at time t that player 1’s risky

arm is good. Player 1’s total expected discounted payoff, expressed in per-period units, can

then be written as

E

[∫ ∞

0

r e−r t [k1,tptg + (1− k1,t)s] dt

]
,

where the expectation is taken over the stochastic processes {k1,t} and {pt}, and r > 0 is

the players’ common discount rate. The corresponding payoff of player 2 is

E

[∫ ∞

0

r e−r t [k2,t(1− pt)g + (1− k2,t)s] dt

]
.

The strategic link between the players stems from the impact of their actions on the evolution

of beliefs.

The posterior belief jumps to 1 if there has been a breakthrough on player 1’s bandit,

and to 0 if there has been a breakthrough on player 2’s bandit, where in either case it will

remain ever after. If there has been no breakthrough on either bandit by time t given the

players’ actions {k1,τ}0≤τ≤t and {k2,τ}0≤τ≤t, Bayes’ rule yields

pt =
p0e

−λ
∫ t
0 k1,τ dτ

p0e
−λ

∫ t
0 k1,τ dτ + (1− p0)e

−λ
∫ t
0 k2,τ dτ

.

In particular, the posterior belief evolves continuously up to the time of the first break-

through.

We restrict players to stationary Markov strategies with the common belief as the state

variable and adopt the solution concept of Markov perfect equilibrium. As Markov strategies

of player i = 1, 2, we allow all functions ki : [0, 1] → {0, 1} such that both k−1
i (0) and k−1

i (1)

are disjoint unions of a finite number of non-degenerate intervals, with ki(0) = i − 1 and

ki(1) = 2 − i (the dominant actions under subjective certainty). A Markov strategy k1 for

player 1 is called a cutoff strategy with cutoff p̂1 if k−1
1 (1) = [p̂1, 1] or ]p̂1, 1]. Analogously,
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a Markov strategy k2 for player 2 is a cutoff strategy with cutoff p̂2 if k−1
2 (1) = [0, p̂2] or

[0, p̂2[ . The action at the cutoff itself is deliberately left unspecified.7

A pair of Markov strategies (k1, k2) is called symmetric if k1(p) = k2(1−p) at all p. The

pair is called admissible if there exists at least one well-defined solution to the corresponding

law of motion for posterior beliefs. This is the case if and only if for each initial belief p0 in

the unit interval, there is a function t 7→ pt on [0,∞[ that satisfies

pt =
p0e

−λ
∫ t
0 k1(pτ ) dτ

p0e
−λ

∫ t
0 k1(pτ ) dτ + (1− p0)e

−λ
∫ t
0 k2(pτ ) dτ

(1)

at all t ≥ 0. This function then describes a possible time path of beliefs prior to the first

breakthrough on a risky arm. If there are multiple solutions, we select the unique solution

that is consistent with a discrete-time approximation; see Appendix B for details and a

characterization of admissible strategy pairs.8

Each admissible strategy pair (k1, k2) induces a pair of payoff functions u1, u2 : [0, 1] →
[0, g] given by

u1(p|k1, k2) = E

[∫ ∞

0

re−rt
{

k1(pt)ptg + [1− k1(pt)]s
}

dt

∣∣∣∣ p0 = p

]
,

u2(p|k1, k2) = E

[∫ ∞

0

re−rt
{

k2(pt)(1− pt)g + [1− k2(pt)]s
}

dt

∣∣∣∣ p0 = p

]
.

For strategy pairs that are not admissible, we set u1 ≡ u2 ≡ −∞.

Strategy k1 is a best response against strategy k2 if the pair of strategies (k1, k2) is

admissible and u1(p|k1, k2) ≥ u1(p|k̃1, k2) for all p in the unit interval and all admissible

(k̃1, k2). Analogously, strategy k2 is a best response against strategy k1 if (k1, k2) is admissible

and u2(p|k1, k2) ≥ u1(p|k1, k̃2) for all p in the unit interval and all admissible (k1, k̃2). A

Markov perfect equilibrium (MPE) is a pair of strategies that are mutually best responses.

On any open interval of beliefs where an admissible pair of strategies (k1, k2) prescribes

constant actions, the posterior belief solves the ordinary differential equation

ṗ = λ [k2(p)− k1(p)] p (1− p) (2)

7We shall see later that there are circumstances where equilibrium requires the players to play safe at the
cutoff belief, and others where equilibrium requires them to play risky.

8If we allowed for degenerate intervals in the interior of the unit interval, there would exist equilibria for
low stakes in which one player would be forced (purely for reasons of admissibility of the strategy pair) to
play risky at a belief where his resulting payoff is less than the safe payoff s. For high stakes, there would
be equilibria in which an interval of beliefs where both players play risky (and achieve a payoff higher than
s) is punctuated by finitely many beliefs at which both play safe. Details are available from the authors
upon request. These equilibria cannot be obtained as limits of equilibria in discrete-time approximations of
the continuous-time game, so we rule them out by insisting that either action must be played on a union of
non-degenerate intervals.
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as long as there is no breakthrough. Since the expected arrival rate of a breakthrough is

k1(p)p λ on player 1’s risky arm, and k2(p)(1− p)λ on player 2’s, standard arguments imply

that player 1’s payoff function solves the ordinary differential equation

ru1(p) = r
{

k1(p)pg + [1− k1(p)]s
}

+ λ
{

k1(p) p [g − u1(p)] + k2(p) (1− p) [s− u1(p)] + [k2(p)− k1(p)] p (1− p) u′1(p)
}

on any open interval where the players’ actions do not change. After dividing both sides by

r, we can write this ODE more succinctly as

u1(p) = s + k2(p)β1(p, u1) + k1(p)[b1(p, u1)− c1(p)],

where c1(p) = s − pg is the opportunity cost player 1 has to bear when he plays risky,

b1(p, u1) = λ
r
p[g − u1(p)− (1− p)u′1(p)] is the learning benefit accruing to player 1 when he

plays risky, and β1(p, u1) = λ
r
(1 − p)[s − u1(p) + pu′1(p)] is his learning benefit from player

2’s playing risky. The corresponding equation for player 2’s payoff function is

u2(p) = s + k1(p)β2(p, u2) + k2(p)[b2(p, u2)− c2(p)],

where c2(p) = s− (1− p)g is the opportunity cost player 2 has to bear when he plays risky,

b2(p, u2) = λ
r
(1− p)[g − u2(p) + pu′2(p)] is the learning benefit accruing to player 2 when he

plays risky, and β2(p, u2) = λ
r
p[s − u2(p) − (1 − p)u′2(p)] is his learning benefit from player

1’s playing risky. It is straightforward to obtain closed-form solutions for these differential

equations; see Appendix A for details.

Given a Markov strategy kj of player j, standard arguments imply that on any open

interval where player j’s action is constant, player i’s payoff function from playing a best

response is once continuously differentiable9 and solves the Bellman equation

ui(p) = s + kj(p)βi(p, ui) + max
ki∈{0,1}

ki[bi(p, ui)− ci(p)].

Conversely, a standard verification argument yields the following sufficiency result. Given

the Markov strategy kj, consider the set S(kj) of all Markov strategies of player i that form

an admissible strategy pair with kj. For any belief p, let Ki(p, kj) = {ki(p) : ki ∈ S(kj)};
this is the set of all actions player i can choose at the belief p under the constraint that

his Markov strategy be admissible together with kj. At all those beliefs where player j’s

action does not change, Ki(p, kj) = {0, 1}. At a belief where player j’s action does change,

by contrast, Ki(p, kj) may be a singleton, in which case player i’s action is already pinned

9At a belief where the opponent’s action changes while the best response does not, the payoff function
from this best response typically has a kink. At a belief where both the opponent’s action and the best
response change, the payoff function may possess a jump discontinuity; see Proposition 7 below.
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down by admissibility.10 Now, strategy ki ∈ S(kj) is a best response if the resulting payoff

function ui satisfies the modified Bellman equation

ui(p) = s + kj(p)βi(p, ui) + max
ki∈Ki(p, kj)

ki[bi(p, ui)− ci(p)]

everywhere on the unit interval. It is understood here that whenever the players’ actions

differ, the right-hand side is evaluated at the one-sided derivative in the direction of the

infinitesimal changes in beliefs implied by the respective strategy pair. When the players’

actions coincide, the terms involving derivatives cancel.

If players were myopic, i.e. merely maximizing current payoffs, player 1 would use the

cutoff pm = s
g

and player 2 the cutoff 1−pm. If they were forward-looking but experimenting

in isolation, player 1 would optimally use the single-agent cutoff computed in Keller, Rady

and Cripps (2005), p∗ = rs
(r+λ)g−λs

< pm, and player 2 the cutoff 1− p∗.

We will find it useful below to distinguish three cases depending on the size of the stakes

involved, i.e. on the value of information as measured by the ratio g
s
, and on the parameters

λ and r that govern the speed of resolution of uncertainty and the player’s impatience,

respectively. We speak of low stakes if g
s

< 2r+λ
r+λ

, intermediate stakes if 2r+λ
r+λ

< g
s

< 2, and

high stakes if g
s

> 2. These cases are easily distinguished by the positions of the cutoffs pm

and p∗: stakes are low if and only if p∗ > 1
2
; intermediate if and only if p∗ < 1

2
< pm; and high

if and only if pm < 1
2
. The boundary cases g

s
= 2r+λ

r+λ
and g

s
= 2 will be treated separately

when needed.

3 The Planner’s Problem

In this section, we examine a utilitarian social planner’s behavior in our setup. The Bellman

equation for the maximization of the average payoff from the two bandits is

u(p) = s + max
(k1,k2)∈{0,1}2

{
k1

[
B1(p, u)− c1(p)

2

]
+ k2

[
B2(p, u)− c2(p)

2

]}
,

where B1(p, u) = λ
r
p[g+s

2
− u(p) − (1 − p)u′(p)] measures the expected learning benefit of

playing risky arm 1, and B2(p, u) = λ
r
(1−p)[g+s

2
−u(p)+pu′(p)] the expected learning benefit

of playing risky arm 2. The planner’s problem is clearly symmetric with respect to p = 1
2
.

By standard arguments, the corresponding value function is convex; by symmetry, it admits

its global minimum at p = 1
2
.

10We will first encounter this phenomenon when determining best responses to cutoff strategies in Propo-
sition 3 below.
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If it is optimal to set k1 = k2 = 0, the value function works out as u(p) = s. If it is

optimal to set k1 = k2 = 1, the Bellman equation reduces to u(p) = λ
r

[
g+s
2
− u(p)

]
+ g

2
, and

so u(p) = u11 = g
2
+ λ

r+λ
s
2
. As one risky arm is good for sure, playing both of them is certain

to generate an expected average payoff of g
2
. At some random time τ , the first success on

the good risky arm causes the planner to switch to the safe arm on the other bandit; his

expected total payoff from that bandit is therefore s
2

times the expectation of e−rτ . As τ is

exponentially distributed with rate parameter λ, this expectation is λ
r+λ

. In the remaining

cases where it is optimal to set k1 = 0 and k2 = 1, or k1 = 1 and k2 = 0, explicit solutions of

the Bellman equation are obtained as the average of the individual payoff functions stated

in Appendix A.

It is clear that (k1, k2) = (1, 0) will be optimal in a neighborhood of p = 1, and (k1, k2) =

(0, 1) in a neighborhood of p = 0. What is optimal at beliefs around p = 1
2

depends on which

of the two possible plateaus s and u11 is higher. This in turn depends on the size of the

stakes involved. In fact, s > u11 if and only if stakes are low, i.e. g
s

< 2r+λ
r+λ

. This is the case

we consider first.

Proposition 1 (Planner’s solution for low stakes) If g
s

< 2r+λ
r+λ

, and hence p∗ > 1
2
, the

planner’s optimum is to apply the single-agent cutoffs p∗ and 1− p∗, respectively, that is, to

set (k1, k2) = (0, 1) on [0, 1− p∗[, k1 = k2 = 0 on [1− p∗, p∗], and (k1, k2) = (1, 0) on ]p∗, 1].

This solution remains optimal in the limiting case where g
s

= 2r+λ
r+λ

and p∗ = 1
2
.

Proof: See Appendix C.

Thus, when the value of information, as measured by g
s
, is so low that the single-agent

cutoff p∗ exceeds 1
2
, it is optimal for the planner to let the players behave as though they

were solving two separate, completely unconnected, problems.11 The left panel of Figure 1

illustrates the corresponding value function.

Next, we turn to the case where u11 > s, which is obtained for intermediate and high

stakes.

Proposition 2 (Planner’s solution for intermediate and high stakes) If g
s

> 2r+λ
r+λ

,

and hence p∗ < 1
2
, the planner’s optimum is to apply the cutoffs p̄ = (r+λ)s

(r+λ)g+λs
∈ ]p∗, 1

2
[ and

1 − p̄, respectively, that is, to set (k1, k2) = (0, 1) on [0, p̄[ , k1 = k2 = 1 on [p̄, 1 − p̄], and

11This would be different if playing the risky arm could also lead to “bad news events” that triggered
downward jumps in beliefs. If, starting from p∗, such a jump were large enough to take the belief below
1− p∗, then letting player 1 play risky at beliefs somewhat below p∗ would raise average payoffs.
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1−p̄ 1−p∗ 1

Figure 1: The planner’s value function for g
s

< 2r+λ
r+λ

(left panel) and g
s

> 2r+λ
r+λ

(right panel).

(k1, k2) = (1, 0) on ]1− p̄, 1]. This solution, with p̄ = p∗ = 1
2
, remains optimal in the limiting

case where g
s

= 2r+λ
r+λ

.

Proof: It is straightforward to check that p∗ ≤ p̄ ≤ 1
2

if g
s
≥ 2r+λ

r+λ
. The rest of the proof

proceeds along the same lines as that of Proposition 1 and is therefore omitted.

The right panel of Figure 1 illustrates this result. To understand why the planner has

either player use the risky arm on a smaller interval of beliefs than in the respective single-

agent optimum, consider the effect of player 1’s action on the aggregate payoff when player

2 is playing risky. If the planner is indifferent between player 1’s actions at the belief p̄, it

must be the case that λ
r
p̄[g + s− 2u11] = c1(p̄), with the possibility of a jump in the sum of

the two players’ payoffs from 2u11 to g + s exactly compensating for the opportunity cost of

player 1 using the risky arm. For a player 1 experimenting in isolation, the corresponding

equation reads λ
r
p∗[g − s] = c1(p

∗). When u11 > s, the jump from s to g is larger than the

one from 2u11 to g + s, so we cannot have p̄ = p∗. That p̄ must be greater than p∗ follows

from the fact that the opportunity cost of using player 1’s risky arm is decreasing in p.

4 Markov Perfect Equilibria

Our next aim is to characterize the Markov perfect equilibria of the experimentation game.

To start out, we shall establish that the best response to certain cutoff strategies is in turn

a cutoff strategy.
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To get a first intuition for the results to come, suppose player 2 follows a cutoff strategy

and player 1 plays a best response. If this response involves playing risky at some belief p,

then the expected benefit of player 1’s experimentation must outweigh its opportunity cost

at p. At a belief p′ > p, the opportunity cost is lower than at p and, since player 2 does

not provide more free information to player 1 at p′ than he does at p, the expected benefit

of player 1’s own experimentation should be at least as high as at p. So player 1 should

also play risky at the belief p′. Thus, k−1
1 (1) should be an interval with right boundary 1,

implying a cutoff strategy for player 1.

The following proposition confirms this intuition and characterizes best-response cutoffs.

Proposition 3 (Best responses to cutoff strategies) For player 1, a best response to

k−1
2 (1) = [0, p̂2[ with p̂2 ≤ p∗ is k−1

1 (1) = ]p∗, 1]; to k−1
2 (1) = [0, p̂2] with p̂2 ≥ pm, it is

k−1
1 (1) = [pm, 1]; and to k−1

2 (1) = [0, p̂2] with p∗ ≤ p̂2 < pm, it is k−1
1 (1) = [p̂2, 1].

For player 2, a best response to k−1
1 (1) = ]p̂1, 1] with p̂1 ≥ 1− p∗ is k−1

2 (1) = [0, 1− p∗[ ;

to k−1
1 (1) = [p̂1, 1] with p̂1 ≤ 1 − pm, it is k−1

2 (1) = [0, 1 − pm]; and to k−1
1 (1) = [p̂1, 1] with

1− pm < p̂1 ≤ 1− p∗, it is k−1
2 (1) = [0, p̂1].

Proof: See Appendix C.

While it is intuitive that player 1 should apply the single-agent cutoff p∗ against an

opponent who plays safe, and thus provides no information, at beliefs p ≥ p∗, it is surprising

that the myopic cutoff pm determines player 1’s best response against an opponent who

plays risky. Technically, this result is due to the fact that along player 1’s payoff function

for k1 = k2 = 1, u1(p) = pg + (1− p) λ
r+λ

s, his learning benefit from playing risky vanishes:

b1(p, u1) =
λ

r
p

[
g −

(
pg + (1− p)

λ

r + λ
s

)
− (1− p)

(
g − λ

r + λ
s

)]
= 0,

and so k1 = 1 is optimal against k2 = 1 if and only if c1(p) ≤ 0, that is, p ≥ pm.

Intuitively, this is best understood by recalling the law of motion of beliefs in the absence

of a success on either arm, ṗ = −(k1 − k2)λp(1− p), which tells us that for k1 = k2 = 1, the

state variable, and hence the players’ actions, will not budge until the first success occurs

and all uncertainty is resolved. Conditional on having the good risky arm, player 1 can thus

look forward to a total expected discounted payoff equal to g. Conditional on having the bad

risky arm, his total payoff equals s times the expectation of e−rτ where τ is the exponentially

distributed random time at which player 2 experiences his first success, causing player 1 to

switch to the safe arm irrevocably. Weighting each state with its subjective probability,
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we obtain a payoff function that is linear in p. This means that player 1 is risk neutral

with respect to lotteries over beliefs, so if he were offered the possibility of observing, for a

short time interval and at no cost, the payoffs generated by a replica of his own risky arm,

he would be indifferent to the offer, assigning zero value to this information because the

resulting mean-preserving spread in beliefs would leave his continuation payoff unchanged

on average. But if the value of information is zero, the decision to use the risky arm must

be myopically optimal.

This insight also explains the third part of the proposition. If player 2 uses a cutoff p̂2

in between player 1’s single-agent cutoff p∗ and myopic cutoff pm, player 1 does not want

to play risky to the left of p̂2 because doing so is not myopically optimal there. Just to the

right of p̂2, by contrast, he faces an opponent playing safe, so he views the situation exactly

as a single agent experimenting in isolation would, and plays risky accordingly. Thus, player

1 uses the same cutoff as player 2. At p̂2 itself, player 1’s behavior is pinned down by the

requirement that his action be part of an admissible strategy pair. If he played safe at p̂2,

the incremental drift of the state variable p would be positive for p ≤ p̂2, and negative for

p > p̂2. As we show in Appendix B, there would then be no solution to the law of motion

of beliefs starting from the prior p0 = p̂2. So player 1 can only use the risky arm at p̂2, and

this action is indeed compatible with admissibility.

Using Proposition 3, it is straightforward to draw best-response correspondences in the

space of cutoff pairs (p̂1, p̂2) and characterize the resulting MPE in cutoff strategies. The

nature of these equilibria depends on the relative position of the cutoffs p∗, pm, 1 − p∗ and

1 − pm, which, as previously noted, gives us a distinction between low, intermediate, and

high stakes. We defer details to Propositions 4–6 below, each of which covers one of these

three cases. For the moment, we just take note of the following stark contrast to Keller,

Rady, Cripps (2005).

Corollary 1 (Equilibria in cutoff strategies) For any combination of the parameters g,

s, r, and λ, there exists an equilibrium in cutoff strategies.

When investigating whether there exist Markov perfect equilibria beyond those in cutoff

strategies, we shall make use of combinatoric arguments, exploiting the fact that for any

admissible pair of Markov strategies, there can be but finitely many beliefs at which a

change in action profile occurs. Appendix B characterizes the types and possible loci of

these changes, allowing us to determine all manners in which equilibrium play can transition

from the action profile (0, 1) at p = 0 to the profile (1, 0) at p = 1.
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Figure 2: The equilibrium payoff functions for g
s

< 2r+λ
r+λ

(left panel) and g
s

> 2 (right panel).

The thick solid curve depicts the payoff function of player 1, the thin solid curve that of

player 2, and the dotted curve the players’ average payoff function.

4.1 Low Stakes

Recall that the low-stakes case is defined by the inequality g
s

< 2r+λ
r+λ

. In this case, 1− pm <

1− p∗ < 1
2

< p∗ < pm.

Proposition 4 (Markov perfect equilibrium for low stakes) When g
s

< 2r+λ
r+λ

, the

unique Markov perfect equilibrium is symmetric and coincides with the planner’s solution.

That is, player 1 plays risky if and only if p > p∗, and player 2 if and only p < 1−p∗. These

strategies continue to be an equilibrium in the limiting case where g
s

= 2r+λ
r+λ

and p∗ = 1
2
.

Proof: For 1 − p∗ ≤ p∗, the cutoff strategies k−1
1 (1) = ]p∗, 1] and k−1

2 (1) = [0, 1 − p∗[ are

mutually best responses by Proposition 3. For 1−p∗ < p∗, uniqueness is proved in Appendix

C.

Why we should have efficiency in this case is intuitively quite clear, as the planner lets

players behave as though they were single players. As p∗ > 1
2
, there is no spillover from a

player behaving like a single agent on the other player’s optimization problem. Hence the

latter’s best response calls for behaving like a single player as well. Thus, there is no conflict

between social and private incentives. The left panel of Figure 2 illustrates this result.

16



4.2 High Stakes

The high-stakes case is defined by the inequality g
s

> 2. In this case, p∗ < pm < 1
2

< 1−pm <

1− p∗.

Proposition 5 (Markov perfect equilibrium for high stakes) When g
s

> 2, the game

has a unique Markov perfect equilibrium, which is symmetric and has both players behave

myopically. That is, player 1 plays risky if and only if p ≥ pm, and player 2 if and only if

p ≤ 1 − pm. These strategies also constitute the unique Markov perfect equilibrium in the

limiting case where g
s

= 2 and pm = 1
2
.

Proof: For pm ≤ 1− pm, the cutoff strategies k−1
1 (1) = [pm, 1] and k−1

2 (1) = [0, 1− pm] are

mutually best responses by Proposition 3. Uniqueness is proved in Appendix C.

When the stakes are high, the unique equilibrium calls for both players’ behaving my-

opically. This is best understood by recalling from our discussion above that individual

optimality calls for myopic behavior whenever one’s opponent is playing risky. When the

stakes are high, players’ myopic cutoff beliefs are more pessimistic than p = 1
2
, so the relevant

intervals overlap.

The right panel of Figure 2 illustrates this result. Player 1’s payoff function has a kink

at 1 − pm, where player 2 changes action. Symmetrically, player 2’s payoff function has a

kink at pm, where player 1 changes action. As a consequence, the average payoff function

has a kink both at pm and at 1− pm. That it dips below the level u11 close to these kinks is

evidence of the inefficiency of equilibrium.

4.3 Intermediate Stakes

This case is defined by the condition that 2r+λ
r+λ

< g
s

< 2, or p∗ < 1
2

< pm. Equilibrium is not

unique in this case; to start with, there is a continuum of equilibria in cutoff strategies, as

the following proposition shows.

Proposition 6 (Intermediate stakes, equilibria in cutoff strategies) For 2r+λ
r+λ

< g
s

<

2, there is a continuum of Markov perfect equilibria in cutoff strategies, each characterized

by a belief p̂ ∈ [max{1− pm, p∗}, min{pm, 1− p∗}] such that player 1 plays risky if and only

if p ≥ p̂, and player 2 if and only if p ≤ p̂. These strategies, with p̂ = p∗ = 1
2
, continue to be

an equilibrium in the limiting case where g
s

= 2r+λ
r+λ

.
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Figure 3: Equilibrium payoff functions for 2r+λ
r+λ

< g
s

< 2. The left panel shows the players’

payoff functions and their average in the unique symmetric equilibrium in cutoff strategies.

The right panel shows the payoff function of player 1 in an equilibrium that is not in cutoff

strategies (see the main text for further details).

Proof: For max{1 − pm, p∗} < p̂ < min{pm, 1 − p∗}, the cutoff strategies k−1
1 (1) = [p̂, 1]

and k−1
2 (1) = [0, p̂] are mutually best responses by Proposition 3.

Amongst the continuum of equilibria characterized in Proposition 6, there is a unique

symmetric one, given by p̂ = 1
2
. The left panel of Figure 3 illustrates this equilibrium.

Both players’ payoff functions and their average are kinked at p = 1
2
, where both players

change action. At any belief except p = 1
2
, the average payoff function is below the planner’s

solution; if the initial belief is p0 = 1
2
, however, the efficient average payoff u11 is achieved.

For the boundary case where g
s

= 2r+λ
r+λ

and p∗ = 1
2
, Propositions 4 and 6 imply that

both versions of the planner’s solution are Markov perfect equilibria. Applying the argu-

ments underlying the proof of Proposition 7 below, one easily shows that there are no other

equilibria in this particular case.

All the equilibria exhibited so far share three features: they are in cutoff strategies;

conditional on no breakthrough, posterior beliefs converge to a limit that varies continuously

with the initial belief (we will return to this point in Section 4.4 below); and the players’

payoff functions are continuous. For intermediate stakes, there exist further equilibria that

are not in cutoff strategies. In these, the limit to which beliefs converge in the absence of a

breakthrough depends discontinuously on the initial belief, and the players’ payoff functions

possess jump discontinuities. In combination with Proposition 6, the following result fully
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characterizes the set of Markov perfect equilibria for intermediate stakes.

Proposition 7 (Intermediate stakes, other equilibria) Let 2r+λ
r+λ

< g
s

< 2, and con-

sider a pair of Markov strategies that are not cutoff strategies. These strategies constitute

an equilibrium if and only if there exists an integer L ≥ 1 and beliefs p̂(0) < p̃(1) < p̂(1) <

. . . < p̂(L−1) < p̃(L) < p̂(L) in the interval [max{1 − pm, p∗}, min{pm, 1 − p∗}] such that: on

[0, p̂(0)[ and all intervals ]p̃(`), p̂(`)[ , the action profile is (0, 1); on all intervals ]p̂(`−1), p̃(`)[

and ]p̂(L), 1], the action profile is (1, 0); at all beliefs p̂(`), the action profile is (1, 1); and at

any belief p̃(`), the action profile is (0, 1) or (1, 0). Both players’ payoff functions have jump

discontinuities at all beliefs p̃(`).

Proof: On the interval [0, p̃(1)[ , the players’ actions and payoffs are the same as in an

equilibrium in cutoff strategies with p̂ = p̂(0). The same is true for each of the intervals

]p̃(`), p̃(`+1)[ (with p̂ = p̂(`)) and ]p̃(L), 1] (with p̂ = p̂(L)). So one only has to verify the mutual

best-response property at the beliefs p̃(`). This is done in Appendix C. We also show there

that payoffs are discontinuous at these beliefs, and that there are no other equilibria.

The right panel of Figure 3 illustrates player 1’s payoff function in an equilibrium with

L = 1. The solid curve is u1, and the dashed line the payoff w1 that player 1 would get if both

players played risky. The dotted curve starting in the lower left corner is the payoff player

1 would receive in a cutoff equilibrium with p̂ = p̂(0), and the dotted curve starting in the

upper right corner the payoff he would obtain in a cutoff equilibrium with p̂ = p̂(1). Between

p̂(0) and p̃(1), beliefs drift downwards as only player 1 plays risky, and they will converge

to p̂(0) in finite time unless there is a breakthrough on player 1’s risky arm. Between p̃(1)

and p̂(1), beliefs drift upwards as only player 2 plays risky, and they will converge to p̂(1) in

finite time unless there is a breakthrough on player 2’s risky arm. Initial beliefs p̃(1)− ε and

p̃(1) + ε thus imply very different paths of beliefs and actions. As a consequence, payoffs are

discontinuous at p̃(1).

4.4 Asymptotics and Speed of Learning

When stakes are low and players use their single-agent cutoff strategies, the evolution of the

posterior belief in the absence of a success on a risky arm is governed by

ṗ =





λp(1− p) if p < 1− p∗,

0 if 1− p∗ ≤ p ≤ p∗,

−λp(1− p) if p > p∗.

(3)
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The asymptotics of the learning process depend both on the true state of the world and the

initial belief. Let us suppose, for example, that risky arm 1 is good. If the initial belief

p0 is lower than 1 − p∗, the posterior belief will converge to 1 − p∗ with probability 1 as

there cannot be a breakthrough on risky arm 2. If 1 − p∗ ≤ p0 ≤ p∗, the belief will remain

unchanged at p0 forever. If p0 > p∗, the belief will converge either to 1 or to p∗. If t∗ is the

length of time needed for the belief to reach p∗ conditional on there not being a breakthrough

on risky arm 1, the probability that the belief will converge to p∗ is e−λt∗ . By Bayes’ rule, we

have 1−pt

pt
= 1−p0

p0e−λt in the absence of a breakthrough, and so e−λt∗ = 1−p0

p0

p∗
1−p∗ . The belief will

therefore converge to p∗ with probability 1−p0

p0

p∗
1−p∗ , and to 1 with the counter-probability.

Analogous results hold when risky arm 2 is good. For low stakes, therefore, the unique (and

efficient) MPE always entails a positive probability for learning to remain incomplete in the

long run, that is, for the process of posterior beliefs to converge to a limit that assigns a

positive probability to the false state of the world.

When stakes are high, the equilibrium dynamics of beliefs conditional on there not being

a breakthrough are given by

ṗ =





λp(1− p) if p < pm,

0 if pm ≤ p ≤ 1− pm,

−λp(1− p) if p > 1− pm.

(4)

Players shut down incremental learning on the interval [pm, 1 − pm]. Yet they still learn

the true state with probability 1 in the long run because once this interval is reached, both

players use their risky arm until the first success resolves all uncertainty.

When stakes are intermediate and the equilibrium is in cutoff strategies with common

cutoff p̂, the dynamics are

ṗ =





λp(1− p) if p ∈< p̂,

0 if p = p̂,

−λp(1− p) if p > p̂,

(5)

and players learn the true state with probability 1 in the long run because both play risky

at p̂. When the equilibrium is not in cutoff strategies, ṗ > 0 on [0, p̂(0)[ and all intervals

]p̃(`), p̂(`)[ and possibly at some of the beliefs p̃(`). Similarly, ṗ < 0 on all intervals ]p̂(`−1), p̃(`)[

and ]p̂(L), 1] and at the remaining beliefs p̃(`). Finally, ṗ = 0 at all beliefs p̂(`). Starting from

any prior, therefore, the dynamics conditional on no breakthrough imply convergence in

finite time to some p̂(`), and as both players play risky there, learning will once more be

complete.

For intermediate and high stakes, learning will thus always be complete in equilibrium,

exactly as it would be in the planner’s solution for which (4) applies with pm and 1 − pm
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replaced by the cutoffs p̄ and 1− p̄, respectively.

We summarize these findings in

Proposition 8 (Asymptotics of learning) In any Markov perfect equilibrium of the ex-

perimentation game, the probability of learning the true state of the world as t → ∞ is the

same as in the planner’s solution. It is smaller than 1 (incomplete learning) for g
s

< 2r+λ
r+λ

,

and equal to 1 (complete learning) for g
s

> 2r+λ
r+λ

. For g
s

= 2r+λ
r+λ

, both complete and incomplete

learning are consistent with efficiency, and both can arise in equilibrium.

Note that these asymptotics only depend on the position of the single-agent cutoffs.

Intuitively, for both players to play safe, neither of them can be more optimistic than his

single-agent cutoff. At any belief in the set [0, 1− p∗[ ∪ ]p∗, 1], therefore, at least one player

must play risky and thus keep the learning process alive. This set is the entire unit interval

if and only if p∗ < 1
2
, that is, g

s
> 2r+λ

r+λ
.

In Keller, Rady and Cripps (2005), where players face risky arms of a common type,

any Markov perfect equilibrium implies an inefficiently small probability of learning the true

state in the long run. As all players become gradually more pessimistic, the incentive to

free-ride makes them give up experimentation earlier than in the planner’s solution. With

risky arms of opposite type, by contrast, it can never be the case that both players are

simultaneously very pessimistic about their individual prospects. Whenever the stakes are

so high that the planner would want both players to experiment at a given belief, therefore,

at least one player is willing to experiment on his own at this belief. Free-riding incentives

can then delay the resolution of uncertainty relative to the social optimum, but not prevent

it. The following proposition derives an upper bound on the expected delay.

Proposition 9 (Speed of learning) For g
s

> 2r+λ
r+λ

and any initial belief, there exists a

Markov perfect equilibrium in cutoff strategies such that the expected delay in the resolution

of uncertainty is less than 1
3

of the expected time by which all uncertainty is resolved in the

planner’s solution.

Proof: See Appendix C.

As we shall see next, the optimality of long-run learning outcomes and the short expected

delay in the resolution of uncertainty are reflected in surprisingly good welfare properties of

the Markov perfect equilibria.
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4.5 Welfare

When stakes are low, the unique MPE has players use their single-agent cutoffs, which

is efficient. For intermediate stakes, an efficient equilibrium outcome can be achieved with

cutoff strategies if and only if the interval of possible equilibrium cutoffs given in Proposition

6 contains the efficient cutoff.

It is straightforward to verify that 1−pm ≤ p̄ and hence max{p∗, 1−pm} ≤ p̄ < 1− p̄ ≤
min{pm, 1− p∗} if 2r+λ

r+λ
< g

s
≤ 2r+λ

2(r+λ)
+

√
(2r+λ)2

4(r+λ)2
+ λ

r+λ
. Then, if the players’ initial belief is

p0 ≤ p̄, the equilibrium with cutoff p̂ = p̄ achieves the efficient outcome as the only beliefs

that are reached with positive probability under the equilibrium strategies are given by the

set {0, 1}∪ [p0, p̄], and the equilibrium strategies prescribe the efficient actions at all of these

beliefs. Similarly, for p0 ≥ 1 − p̄, the efficient outcome is achieved by the equilibrium with

cutoff p̂ = 1−p̄. Finally, if p̄ < p0 < 1−p̄, the efficient outcome is achieved by the equilibrium

with cutoff p̂ = p0. If 2r+λ
2(r+λ)

+
√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
< g

s
< 2, by contrast, we have p∗ < p̄ < 1−pm

and hence p̄ < max{p∗, 1−pm} < min{pm, 1−p∗} < 1− p̄. In this case, the efficient outcome

can only be achieved for initial beliefs p0 ∈ {0} ∪ [1− pm, pm] ∪ {1}.
If stakes are high, the unique MPE implies efficient behavior except on the set [p̄, pm[ ∪ ]1−

pm, 1− p̄]. In this case, the efficient outcome arises if and only if p0 ∈ {0}∪ [pm, 1−pm]∪{1}.

Proposition 10 (Welfare) If g
s
≤ 2r+λ

2(r+λ)
+

√
(2r+λ)2

4(r+λ)2
+ λ

r+λ
, then for each initial belief, there

exists a Markov perfect equilibrium in cutoff strategies that achieves the efficient outcome.

If g
s

> 2r+λ
2(r+λ)

+
√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
, there are initial beliefs under which the efficient outcome

cannot be reached in any Markov perfect equilibrium. For any such belief p, there exists an

equilibrium in cutoff strategies such that

u(p)− s

ū(p)− s
>

1

2
,

where u(p) and ū(p) are the players’ average payoffs in the equilibrium and the planner’s

solution, respectively.

Proof: The first two statements of the proposition follow directly from the preceding dis-

cussion. The lower bound on average payoffs is established in Appendix C.

The stated lower bound is straightforward to derive from the closed-form solutions for

the players’ payoff functions. This bound is by no means tight, however. In fact, a numerical

evaluation on a grid of pairs ( r
λ
, g

s
) suggests that for 0 < r

λ
≤ 10 and 1 < g

s
≤ 10, there

always exists an MPE in cutoff strategies for which the above ratio exceeds 86%. To put
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this number in perspective, it is worthwhile recalling from Keller, Rady and Cripps (2005)

that in any Markov perfect equilibrium of the experimentation game with risky arms of a

common type, there is a range of beliefs at which all players play safe while the planner

would want all of them to play risky. At these beliefs, the above ratio is zero.

4.6 Discussion

We have restricted attention to what in the literature have been termed “pure strategy

equilibria” (by Bolton and Harris, 1999 and 2000) or “simple equilibria” (by Keller, Rady

and Cripps, 2005, and Keller and Rady, 2010). An extension of the strategy space allowing

players to choose experimentation intensities from the entire unit interval would leave the

planner’s solution unchanged. Moreover, as the intensity of experimentation enters linearly

into a player’s Bellman equation, our simple equilibria are immune against deviations to

interior intensities.

While we have assumed that players are symmetric, it is straightforward to extend our

analysis to those asymmetries between players that preserve a zero value of information when

both players use the risky arm. This is the case if players differ in their discount rates, safe

payoff levels or average sizes of lump-sum payoffs on a good risky arm. If p∗ continues to

denote player 1’s single-agent cutoff, player 2’s single-agent optimum is then to play risky

on an interval [0, q∗[ with q∗ 6= 1 − p∗; similarly, the players’ myopic cutoffs will satisfy

qm 6= 1 − pm whenever players face different stakes. As all that matters for the planner’s

solution, best responses and equilibrium is the relative position of the four cutoffs, all our

results extend readily, the only difference being that typically there will be no symmetric

equilibrium.

Matters become more complicated if player 1, say, has a higher innate ‘ability’ than

player 2, i.e. if the risky arms are characterized by arrival rates λ1 > λ2. In this case, beliefs

satisfy ṗ = [λ2k2(p) − λ1k1(p)] p (1 − p) up to the first breakthrough, which has two major

implications. First, at any transition between the action profiles (0, 1) and (1, 1), player 1

must use the interior intensity of experimentation k1 = λ2/λ1 both in the planner’s solution

and when playing a best response. As in Presman (1990), such an interior allocation is

the only way to obtain a well-defined law of motion for beliefs, and we must broaden our

definition of cutoff strategies accordingly. Second, on any interval of beliefs where both

players use the risky arm, ṗ < 0, which leads to convex payoff functions. So the value of

information is positive and the best response against the opponent’s playing risky is given

by a threshold belief more pessimistic than the myopic cutoff.

If players differ only in the arrival rates of lump-sum payoffs, for example, player 1’s best
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response against player 2’s playing risky is to apply the cutoff p̂1 = (r+λ2)s
(r+λ1)λ1h−(λ1−λ2)s

< pm

which is pinned down by smooth pasting of player 1’s payoff function with the linear lower

bound obtained from the constant action profile (λ2/λ1, 1). In the high-stakes scenario

where player 2 plays risky to the right of p̂1, his best response must then be determined

via an intermediate-value argument that enforces smooth pasting, at a cutoff p̂2, between

the two functions that describe player 2’s payoffs from the action profiles (1, 1) and (1, 0),

respectively; p̂2 no longer admits a representation in closed form.12 Still, it is straightforward

to establish uniqueness and efficiency of Markov perfect equilibrium as well as incomplete

learning for low stakes, and complete learning for intermediate and high stakes.

The same holds true for an extension of our model where, as in Keller and Rady (2010),

even a bad risky arm has a non-zero arrival rate of lump-sum payoffs, implying that when-

ever a risky arm generates a success, beliefs about the quality of this arm jump up to a more

optimistic level, but never to full certainty. Consequently, payoff functions solve differential-

difference equations. These still admit closed-form solutions, yet it is now much harder to

paste them together at those beliefs where the action profile changes. When both players use

the risky arm, for instance, the continuation payoffs after both an upward and a downward

jump of beliefs enter the Bellman equation, so an optimal change of action must be deter-

mined jointly with these continuation payoffs. This yields nonlinear equations for optimal

cutoffs without explicit solutions. As to possible equilibria for intermediate and high stakes,

the best response to an opponent using the risky arm again differs from the myopic cutoff

strategy. This is because the belief held immediately after a success varies with the belief

held immediately before, so that expected payoffs conditional on the true state are no longer

constant over the range of beliefs where both players play risky, once more leading to convex

payoff functions and a positive value of information.

5 Imperfect Negative Correlation

We now extend our model by introducing a third state of the world in which both risky

arms are bad. This means that the quality of the risky arm is no longer perfectly negatively

correlated across players, and introduces a dimension of collective pessimism into the game,

captured by the posterior probability that neither player has a good risky arm.

There are two players, i = 1, 2, and three states, θ = 0, 1, 2, where θ = i ∈ {1, 2}
signifies that player i has the only good risky arm, while θ = 0 means that both risky

12Details on the extensions discussed in this paragraph and the next are available from the authors upon
request.
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arms are bad. This structure is common knowledge. We write pθ for the common posterior

probability assigned to state θ, and use the pair (p1, p2) as the vector of state variables. The

(subjective) correlation coefficient between the types of the two risky arms is

ρ = −
√

p1

1− p1

p2

1− p2

,

which can assume any value in the interval [−1, 0].

Given time paths of actions {ki,τ}0≤τ≤t for i = 1, 2 and no breakthrough by time t, the

posterior beliefs at time t are

pi,t =
pi,0 e−λ

∫ t
0 ki,τ dτ

1− p1,0 − p2,0 +
∑2

j=1 pj,0 e−λ
∫ t
0 kj,τ dτ

(i = 1, 2).

The corresponding differential equations are

ṗi = λpi

(
2∑

j=1

pjkj − ki

)
(i = 1, 2).

We note that over any time interval where the action profile (k1, k2) = (1, 1) is played without

a success, the ratio p2

p1
stays constant and the beliefs (p1, p2) move towards the origin along

a straight line, expressing an increase in collective pessimism. Under the action profile

(1, 0), the ratio p2

1−p1−p2
stays constant and the beliefs (p1, p2) move along a straight line

p2 = C (1− p1) with a positive constant C < 1, expressing increases in player 1’s individual

pessimism, player 2’s individual optimism, and both players’ collective pessimism.

Writing P = {(p1, p2) ∈ [0, 1]2 : p1 + p2 ≤ 1}, we restrict players to Markov strategies

ki : P → [0, 1] with the following properties: (i) the sets k−1
i (0) and k−1

i (1) each have a

connected interior in P ; (ii) the union of the closures of k−1
i (0) and k−1

i (1) is P ; (iii) the

intersection of the closures of k−1
i (0) and k−1

i (1) consists of a finite number of differentiable

curves; (iv) along each of these curves, ki varies continuously with beliefs; (v) ki(p1, p2) = 0

if pi = 0, and ki(p1, p2) = 1 if pi = 1. A Markov strategy ki is called a cutoff strategy if

there exists a continuous and piecewise differentiable function hi : [0, 1] → [0, 1] such that

ki(p1, p2) = 1 for pi > hi(p3−i) and ki(p1, p2) = 0 for pi < hi(p3−i). This function merely

defines the switching boundary where a player changes from one action to the other. The

behavior along the boundary needs to be specified separately so as to ensure a well-defined

evolution of beliefs. In some cases, this will require interior intensities of experimentation.

A pair of Markov strategies is called symmetric if k1(p, q) = k2(q, p) for all (p, q) ∈ P .

For cutoff strategies, symmetry means h1 = h2. The definition of admissibility is analogous

to the benchmark model of perfect negative correlation.
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Player i’s Bellman equation is

ui(p1, p2) = s + k3−i(p1, p2)βi(p1, p2, ui) + max
ki∈[0,1]

ki [bi(p1, p2, ui)− ci(pi)] ,

where bi(p1, p2, ui) = λ
r
pi[g − ui − (1− pi)

∂ui

∂pi
+ p3−i

∂ui

∂p3−i
], βi(p1, p2, ui) = λ

r
p3−i[s− ui − (1−

p3−i)
∂ui

∂p3−i
+pi

∂ui

∂pi
] and ci(pi) = s−pig. In Appendix A.3, we use the method of characteristic

curves to derive explicit expressions for the players’ payoffs from the action profiles (1, 1),

(1, 0) and (0, 1). This allows us to derive the following result.

Proposition 11 (Imperfect correlation) There always exists a symmetric Markov per-

fect equilibrium in cutoff strategies.

Proof: The proof is by construction; see the specification of equilibrium strategies below

and the verification of the best-response property in Appendix C.

For g
s
≤ 2r+λ

r+λ
, and hence p∗ ≥ 1

2
, the common equilibrium cutoff can be taken to be

constant and equal to the single-agent cutoff p∗, with either player playing safe at the cutoff

itself. This equilibrium is illustrated in the left panel of Figure 4, with the labels “00”, “01”

and “10” standing for the action profiles (0, 0), (0, 1) and (1, 0), respectively. The intuition

for this equilibrium carries over from the case of perfect negative correlation.

For 2r+λ
r+λ

< g
s
≤ 2, and hence p∗ < 1

2
≤ pm, equilibrium cutoffs can be defined by

the function h(p) = max{p∗, p }. Along the switching boundary, player i plays safe when

pi = p∗ ≥ p3−i and risky when pi = p3−i > p∗. This equilibrium is illustrated in the middle

panel of Figure 4. Fix a prior in the interior of the 10 region. If this prior lies below the line

joining the belief (p∗, p∗) with the belief (1, 0), player 1 plays risky until either a breakthrough

occurs or beliefs reach the vertical segment {p∗} × [0, p∗], where player 1 gives up and all

learning stops. In this scenario, the increase in player 2’s optimism as player 1 fails to have

a breakthrough is not enough to entice him to experiment himself. This is different if the

prior lies above the line joining the belief (p∗, p∗) with the belief (1, 0). In the absence of a

breakthrough on player 1’s risky arm, beliefs now move to the 45 degree line, where player 2

joins player 1 in playing risky. From that point on, beliefs move down the 45 degree line and,

in the absence of a breakthrough, become stationary in the point (p∗, p∗) where both players

play safe. Along the part of the 45 degree line where both players play risky, their payoff

functions are kinked and the best-response property follows from the restrictions imposed by

admissibility of the players’ strategies, exactly as in the symmetric MPE in cutoff strategies

under perfect negative correlation (corresponding to the upper right edge of the triangle).
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Figure 4: Cutoff equilibria of the experimentation game with imperfect negative correlation

between the types of the risky arms.

For g
s

> 2, and hence pm < 1
2
, we define p̃ = rs

(r+λ)g−2λs
, which lies between p∗ and pm.

An equilibrium cutoff function is then given by h(p) = max{p∗, p } for p ≤ p̃, and

h(p) =
(r + λp)s

(r + λ)g − λs

for p > p̃. As to the actions chosen along the switching boundary, player i plays safe when

pi = p∗ ≥ p3−i, plays risky when p∗ < pi = p3−i ≤ p̃, and sets

ki =
(r + λ)g − λs

g − s

p3−i

r + λp3−i

when pi = h(p3−i) > p̃. This equilibrium is illustrated in the right panel of Figure 4. As we

move down along player 2’s switching boundary from the belief (1 − pm, pm) to the belief

(p̃, p̃), player 2’s intensity of experimentation monotonically falls from 1 to s
g−s

.13 This

interior intensity is precisely the one that keeps posterior beliefs on the boundary as long as

no breakthrough occurs. The boundary itself is pinned down by the requirement that given

k1 = 1, player 2 must have b2 > c2 above the boundary and b2 < c2 below it.14 Once a belief

on the diagonal line segment between (p∗, p∗) and (p̃, p̃) is reached, the evolution of beliefs

and actions is the same as in the MPE for intermediate stakes.

For low stakes, the equilibrium described above is efficient. For intermediate and high

stakes, the planner’s solution is given by the cutoff function

h(p) = max

{
p∗,

(r + λp)s

(r + λ)g

}
.

13In this and the following figure, boundaries along which some player uses an interior intensity of exper-
imentation are shown as dashed lines.

14See Lemmas A.2 and A.3 in the Appendix.
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The increasing part of player 2’s efficient switching boundary is thus a straight line joining the

beliefs (p∗, p∗) and (1− p̄, p̄), where p̄ is the efficient cutoff for perfect negative correlation.15

For intermediate and high stakes, therefore, the equilibria that we constructed are inefficient

in that the set of beliefs at which both players use the risky arm is smaller than in the

planner’s solution. The set of beliefs at which learning stops is the same as in the planner’s

solution, though. This yields the following counterpart to Proposition 8.

Proposition 12 (Imperfect correlation, asymptotics of learning) There always exists

a Markov perfect equilibrium in which the probability of learning the true state of the world

as t →∞ is the same as in the planner’s solution.

Proof: As the equilibrium constructed for g
s
≤ 2r+λ

r+λ
is efficient, we can assume that g

s
>

2r+λ
r+λ

and hence p∗ < 1
2
. By symmetry of the planner’s solution and the above equilibria

in cutoff strategies, we can restrict ourselves to initial beliefs (p1,0, p2,0) with p1,0 ≥ p2,0.

By Proposition 8, we can further assume that p1,0 + p2,0 < 1. If this initial belief satisfies

p1,0 ≤ p∗ or p2,0 ≤ p∗
1−p∗ (1−p1,0), the equilibrium outcome is the same as the efficient outcome.

Suppose therefore that p1,0 > p∗ and p2,0 > p∗
1−p∗ (1− p1,0). In the absence of a breakthrough,

both the efficient and the equilibrium paths of play then lead to the posterior belief (p∗, p∗)

in finite time.

Consider any time paths of actions {ki,τ}0≤τ≤t for i = 1, 2 that in the absence of a

breakthrough lead to the belief (p∗, p∗) by time t. Bayes’ law then implies

p∗ =
pi,0 e−λ

∫ t
0 ki,τ dτ

1− p1,0 − p2,0 +
∑2

j=1 pj,0 e−λ
∫ t
0 kj,τ dτ

for i = 1, 2. This is a system of two linear equations in Pi = e−λ
∫ t
0 ki,τ dτ that is easily seen to

have a unique solution (P1, P2) for p∗ 6= 1
2
. As Pi is the probability of no breakthrough on

player i’s risky arm up to time t conditional on this arm being good, the efficient and the

equilibrium paths of play imply the same conditional probability of a breakthrough before

all learning stops, and hence the same conditional probability of learning the true state.

As in the case of perfect negative correlation, therefore, strategic interaction between

the players need not lead to an inefficiently high probability of incomplete learning.

15The derivation of the planner’s solution is very similar to the construction of the high-stakes MPE, and
can be based on straightforward adaptations of Lemmas A.2 and A.3.
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6 More Than Two Players

The last extension that we explore has N ≥ 3 players, i = 1, . . . , N , each playing a bandit

of the exponential type. It is common knowledge that exactly one of them has a good risky

arm. We write pi for the common posterior probability that player i’s risky arm is the good

one.

The three-player case is easiest to visualize, and its analysis very similar to that of the

two-player game with imperfect negative correlation, so we focus on this case, returning to

general N only briefly at the end of the section. With N = 3, we can again use the pair

(p1, p2) as the vector of state variables. Markov and cutoff strategies can be defined along

the same lines as in the previous section.

Player i’s Bellman equation is now

ui(p1, p2) = s +
∑

j 6=i

kjβij(p1, p2, ui) + max
ki∈{0,1}

ki[bi(p1, p2, ui)− ci(p1, p2)].

Here, the learning benefits from a player’s own experimentation are bi(p1, p2, ui) = λ
r
pi[g−ui−

(1− pi)
∂ui

∂pi
+ p3−i

∂ui

∂p3−i
] for i = 1, 2 and b3(p1, p2, u3) = λ

r
(1− p1− p2)[g− u3 + p1

∂u3

∂p1
+ p2

∂u3

∂p2
].

The learning benefits that accrue to player i when player j 6= i uses the risky arm are

βij(p1, p2, ui) = λ
r
pj[s − ui − (1 − pj)

∂ui

∂pj
+ p3−j

∂ui

∂p3−j
] for j = 1, 2 and βi3(p1, p2, ui) = λ

r
(1 −

p1−p2)[s−ui+p1
∂ui

∂p1
+p2

∂ui

∂p2
]. The opportunity costs of experimentation are ci(p1, p2) = s−pig

for i = 1, 2, and c3(p1, p2) = s− (1− p1 − p2)g.

If the prevailing action profile is (0, 0, 0), each player’s payoff function equals ui = s. If

(1, 1, 1) prevails, the payoff functions are linear, exactly as in the two-player model: ui =

pig + (1− pi)
λ

r+λ
s. Explicit expressions for the players’ payoffs from all other action profiles

can again be derived as in Appendix A.3. An equilibrium transition between the action

profiles (1, 0, 0) and (0, 0, 0) is easily seen to require p1 = p∗, while a transition between

(1, 1, 1) and (0, 1, 1) requires p1 = pm; the intuition for these findings is exactly the same as

in the two-player model with perfect negative correlation.

For g
s

< 3r+λ
r+λ

, and hence p∗ > 1
3
, the equilibria that we constructed for the two-player

game with imperfect negative correlation translate one-to-one into equilibria of the three-

player game. To see this, consider the triangle T with the corners (1
3
, 1

3
), (1

2
, 1

2
) and (1, 0)

in the (p1, p2)-plane; in the three-player game, this corresponds to the set of all beliefs such

that p1 ≥ p2 ≥ p3. On T , let players 1 and 2 play the same strategies as in the two-player

MPE constructed in the previous section, and let player 3 play safe. Given a prior belief in

T , posterior beliefs then remain in T unless there is a success on player 1’s or, if he gets

to experiment at all, player 2’s risky arm. As player 3 never experiments, players 1 and 2

29



are facing exactly the same situation as in a two-player game between them, and thus are

playing best responses. Player 3’s payoff on T is u3 = s, so b3 < c3 if and only if p3 < p∗,

which is obviously the case here because the inequalities p1 ≥ p2 ≥ p3 imply p3 ≤ 1
3
. There

is now a unique way to extend the players’ strategies on T to a symmetric strategy profile

on the entire state space; this strategy profile clearly constitutes an equilibrium.

For the following proposition, therefore, only parameter constellations such that g
s
≥

3r+λ
r+λ

, and hence p∗ ≤ 1
3
, require further work.

Proposition 13 (Three players) There always exists a symmetric Markov perfect equi-

librium in cutoff strategies.

Proof: The proof is again by construction. Equilibrium strategies for g
s
≥ 3r+λ

r+λ
are illus-

trated in Figure 5 below. The verification of the best-response property proceeds along the

same lines as in the proof of Proposition 11. Details are available from the authors upon

request.

Figure 5 illustrates equilibrium strategies in the four cases that need to be distinguished

when p∗ ≤ 1
3
. To emphasize the symmetry of these equilibria, beliefs are represented as

elements of a standard 2-simplex. Its vertices correspond to the three possible degenerate

beliefs about the state of the world; the vertex marked “1”, for instance, corresponds to

subjective certainty that player 1 has the good risky arm. The probability pi that player

i has the good risky arm is constant along any line running parallel to the edge that lies

opposite vertex “i”.

In each of the four panels of Figure 5, all players use the risky arm at the center of the

simplex, where p1 = p2 = p3 = 1
3
. When g

s
≤ 3, and hence pm ≥ 1

3
, this is the only belief

at which the action profile (1, 1, 1) is played; when g
s

> 3, and hence pm < 1
3
, this profile is

played at all beliefs such that min{p1, p2, p3} ≥ pm.

As to the solid lines that end in the center of the simplex in the upper two panels of

Figure 5, the two players who experiment individually on either side of such a line, experiment

jointly along it. In the lower left panel, the action profile along any such line is the same

as in the region from where the line emanates, so that just one player experiments along it.

The same goes, in the lower right panel, for the solid lines ending in the triangle where the

profile (1, 1, 1) is played. In each case, the verification of the best-response property along a

solid line rests on restrictions imposed by admissibility of the players’ strategies.

The dashed lines in the upper right and the two lower panels are switching boundaries

of exactly the same type as in the high-stakes MPE of the two-player game with imperfect
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Figure 5: Cutoff equilibria of the experimentation game with three players when p∗ ≤ 1
3
.

negative correlation. The player who plays safe on one side of the boundary, and risky on

the other, chooses an interior intensity of experimentation at the boundary itself, making

posterior beliefs move along it as long as no breakthrough occurs.

Clearly, learning will be complete in any of the equilibria depicted in Figure 5. For

p∗ ≤ 1
3
, complete learning is also efficient because the action profile (1, 1, 1) weakly dominates

the profile (0, 0, 0) in terms of the three players’ expected average payoff, so the planner has

no reason ever to stop learning. For p∗ > 1
3
, we can exploit symmetry of our equilibria as well

as of the planner’s solution and restrict our attention to beliefs in the set T defined above.

On this set, the planner asks player 3 to use the safe arm, and players 1 and 2 to follow
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the strategies that are efficient in the two-player game with imperfect negative correlation.

Invoking Proposition 12, we thus obtain

Proposition 14 (Three players, asymptotics of learning) There always exists a Markov

perfect equilibrium in which the probability of learning the true state of the world as t →∞
is the same as in the planner’s solution.

While the construction of Markov perfect equilibria becomes increasingly complex as

the number of players grows, it is clear that for g
s
≤ 2r+λ

r+λ
, and hence p∗ ≥ 1

2
, the planner’s

solution remains an equilibrium for arbitrary N ; as before, it lets all players use the single-

agent cutoff and implies incomplete learning. More generally, a necessary condition for all N

players to play safe on some non-empty open set of beliefs, be it in the planner’s solution or

in equilibrium, is that all elements of this set satisfy max{p1, . . . , pN} ≤ p∗. For g
s

> Nr+λ
r+λ

,

and hence p∗ < 1
N

, this means that the planner’s solution as well as any MPE must lead to

complete learning. For 2r+λ
r+λ

< g
s
≤ Nr+λ

r+λ
, it is optimal for the planner to let all N players use

the safe arm if and only if max{p1, . . . , pN} ≤ p∗. We conjecture that there exist equilibria

in which learning stops on the exact same set of beliefs.

7 Concluding Remarks

We have analyzed games of strategic experimentation in continuous time where players’

expected risky payoffs are negatively correlated. Our first set of results concerns a game

with two players and common knowledge that exactly one of them has a bandit with a good

risky arm. In sharp contrast to the situation where players face risky arms of a common

quality, this game always admits equilibria of the cutoff type, and equilibrium is unique and

symmetric in two subsets of the parameter space. When the stakes are low, players behave

as if they were single players experimenting in isolation, and this is efficient. When the

stakes are high, players behave as if they were myopic. Finally, learning will be complete in

equilibrium if and only if efficiency requires complete learning.

This analysis naturally raises the question under what circumstances two players would

choose to play a strategic experimentation game with bandits of opposite, rather than com-

mon, type. To analyze this question, we can extend our model by letting players first decide

sequentially whether they want to experiment with risky arm 1, whose prior probability of

being good is p0, or with risky arm 2, whose corresponding probability is 1− p0. They then

play the strategic experimentation game with either perfectly positively or perfectly nega-

tively correlated bandits, as the case might be. Using the fact that in the experimentation
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game in Keller, Rady and Cripps (2005), no player can obtain an equilibrium payoff higher

than twice the planner’s solution minus the single-agent solution, it is straightforward to

derive a condition on the model parameters under which equilibrium of the extended game

uniquely predicts that players choose different risky arms for all priors p0 in a neighborhood

of 1
2
. It is easy to find parameter combinations that satisfy this condition; for instance, r

λ
= 2

and g
s

= 3 will do. Given any r and λ, moreover, the condition will always be fulfilled if the

stakes g
s

are large enough.

While this extension of the model with perfect negative correlation merely allows for

one irreversible project choice, Klein (2010) analyzes a variant of this setup where, akin to

Chatterjee and Evans (2004), both players have access to both risky arms and can switch

between them at will. This requires the players to solve identical three-armed bandit prob-

lems with a safe arm and two risky arms that are known to be of opposite types. In contrast

to our setting, where the planner’s solution is incentive-compatible if and only if the stakes

are low enough, he finds that the planner’s solution is incentive-compatible if and only if the

stakes are high enough. This is because for sufficiently high stakes, the safe arm becomes

so unattractive that the players are willing to explore the risky arm that momentarily ap-

pears more promising given that the opponent also explores the arm, which is exactly what

efficiency requires.

Our second set of results concerns experimentation games with imperfect negative corre-

lation of the type of risky arm across players. In the model with two players and a third state

of the world in which neither has a good risky arm, there always exists a symmetric Markov

perfect equilibrium in cutoff strategies. Although the state space is a two-dimensional sim-

plex and the players’ payoff functions solve partial differential equations, we have been able

to compute players’ equilibrium strategies and payoffs in closed form. Imperfect correlation

introduces a dimension of collective pessimism into the model, captured by the posterior

probability that both risky arms are bad. As a consequence, the planner’s solution involves

a set of beliefs where both players use the safe arm, so efficient learning is necessarily in-

complete. In the equilibria we construct, the set of beliefs where both players play safe is

the same as in the planner’s solution, so learning does not stop inefficiently early; in fact,

the probability of learning the true state of the world in the long run is the same as in the

planner’s solution. Even with imperfect negative correlation, therefore, strategic interaction

does not make learning inefficient in the long run. We obtain quite similar results in a

three-player game in which it is common knowledge that exactly one player has a good risky

arm.

In our setting, the definition of admissible strategies turned out to be more involved

than in the case of perfect positive correlation. As a matter of fact, this difficulty arises
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as soon as the (binary) type of the risky arm is not perfectly positively correlated across

players, that is, as soon as there is a positive probability that they might have risky arms

of opposite type. To see this in a two-player setting, consider the four possible states of the

world: θ = 0 (no player has a good risky arm), θ = 1 (player 1 has the only good risky

arm), θ = 2 (player 2 has the only good risky arm), and θ = 3 (both players have a good

risky arm), and write pθ for the probability that the players assign to state θ. As long as

there is no breakthrough, we then have ṗ3 = −λp3 {(1− p3)(k1 + k2)− p1k1 − p2k2} ≤ 0; for

p1 = p2 = 0, this reduces to the dynamics in Keller, Rady & Cripps (2005), where each pair

of strategies that are left-continuous in p3 is admissible. For i = 1, 2, on the other hand, we

have ṗi = λpi {piki + p3−ik3−i − ki + p3(k1 + k2)}; for p3 = 0, this reduces to the dynamics

in the imperfect-correlation version of our model. In particular, ṗ1 = −λp1(1−p1−p3) when

the action profile is (k1, k2) = (1, 0), ṗ1 = λp1(p2 + p3) when the action profile is (0, 1), and

similarly for ṗ2. Whenever pi > 0, therefore, the sign of ṗi depends on the action profile,

which means that, as in our model, player i’s admissible strategies cannot be defined without

reference to the other player’s strategy. This also applies to a scenario of imperfect positive

correlation obtained for p1 and p2 positive but small. Thus, the admissibility issues showing

up in our model are the “generic” phenomenon, while the case of perfect positive correlation

is truly exceptional because it is one of only two cases in which the space of admissible

strategy pairs is a product set, the other being the trivial case of independent types.

Throughout our analysis, we have maintained the assumption that both actions and

outcomes were publicly observable at all times. Bonatti & Hörner (2010) investigate varying

correlations of bandit types between players under the assumption of private actions and

publicly observable outcomes, but in their setup everybody switches to playing safe at the

myopic cutoff. The effect of allowing for private actions when there is an incentive to play

risky beyond the myopic cutoff has not been investigated yet. One of our main conclusions

appears robust to such an extension of our model: for sufficiently high stakes, it cannot

be common knowledge that all players have stopped using the risky arm, so there must be

complete learning in equilibrium. We leave a full analysis of such a model to future work.
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Appendix

A Payoff Functions

For p ∈ [0, 1], we define

w1(p) = pg + (1− p)
λ

r + λ
s and w2(p) = (1− p)g + p

λ

r + λ
s = w1(1− p).

These are the players’ payoff functions when both are playing risky. For the explicit representation
of other payoff functions, it will be convenient to define

u0(p) = (1− p)
(

1− p

p

) r
λ

.

Note that
u′0(p) = −

r
λ + p

p(1− p)
u0(p)

and u′′0 > 0.

A.1 Explicit Solutions for Perfect Negative Correlation

On any open interval where k1(p) = 1 and k2(p) = 0, u1 and u2 satisfy the ODEs

λp(1− p)u′1(p) + (r + λp)u1(p) = (r + λ)pg,

λp(1− p)u′2(p) + (r + λp)u2(p) = (r + λp)s,

which have the solutions u1(p) = pg + C1u0(p) and u2(p) = s + C2u0(p) with constants C1 and C2.
Finally, on any open interval where k1(p) = 0 and k2(p) = 1, u1 and u2 solve

λp(1− p)u′1(p)− [r + λ(1− p)]u1(p) = −[r + λ(1− p)]s,

λp(1− p)u′2(p)− [r + λ(1− p)]u2(p) = −(r + λ)(1− p)g,

hence u1(p) = s + D1u0(1− p) and u2(p) = (1− p)g + D2u0(1− p) with constants D1 and D2.
Note that each of the above closed-form solutions is the sum of one term that expresses the

expected payoff from committing to a particular action and another term that captures the option
value of being able to switch to the other action.

A.2 An Auxiliary Result for Perfect Negative Correlation

The following lemma will be useful in the proofs of Lemma B.4 and Proposition 3.

Lemma A.1 On any open interval of beliefs where the payoff function of player i satisfies ui(p) =
s + βi(p, ui), the sign of bi(p, ui)− ci(p) coincides with the sign of wi(p)− ui(p).

Proof: We first note that bi(p, ui) + βi(p, ui) = λ
r [ui(p)− ui(p)] where u1(p) = pg + (1− p)s and

u2(p) = u1(1 − p) are the players’ expected full-information payoffs. As βi(p, ui) = ui(p) − s, this
implies bi(p, ui)− ci(p) = λ

r [ui(p)− ui(p)]− ui(p) + s− ci(p) = r+λ
r [wi(p)− ui(p)].
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A.3 Explicit Solutions in the Three-State Model

The laws of motion for p1 and p2 under the action profile (1, 0) are ṗ1 = −λp1(1−p1) and ṗ2 = λp1p2.
The resulting partial differential equation for player 1’s payoff function is

λp1(1− p1)
∂u1

∂p1
− λp1p2

∂u1

∂p2
+ (r + λp1)u1 = (r + λ)p1g.

A particular solution is u(p1, p2) = p1g, that is, the payoff from committing to (1, 0) forever.
We look for solutions to the homogeneous PDE of the form u1(p1, p2) = (1 − p1)v(p1, p2), so

that v must solve the PDE

λp1(1− p1)
∂v

∂p1
− λp1p2

∂v

∂p2
+ rv = 0.

Along a trajectory (p1,t, p2,t)t≥0, this implies

d

dt
v(p1,t, p2,t) = rv(p1,t, p2,t)

and hence
v(p1,t, p2,t) = ertv(p1,0, p2,0).

We now note that under the action profile (1, 0), the posterior probability for player 1’s arm being
good in the absence of a breakthrough is

p1,t =
p1,0e

−λt

p1,0e−λt + 1− p1,0
,

implying

ert =
(

1− p1,0

p1,0

)− r
λ

(
1− p1,t

p1,t

) r
λ

.

Therefore,

v(p1,t, p2,t)
(

1− p1,t

p1,t

)− r
λ

is constant along the trajectory. As each trajectory is uniquely described by its slope p2

1−p1
, we thus

have

v(p1, p2) = f1
10

(
p2

1− p1

)(
1− p1

p1

) r
λ

with some differentiable univariate function f1
10. This yields the following general form for player

1’s payoff function under (1, 0):

u1(p1, p2) = p1g + f1
10

(
p2

1− p1

)
u0(p1).

Player 2’s payoff function under the action profile (1, 0) satisfies

λp1(1− p1)
∂u2

∂p1
− λp1p2

∂u2

∂p2
+ (r + λp1)u2 = (r + λp1)s,
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for which the same steps as above yield the general solution

u2(p1, p2) = s + f2
10

(
p2

1− p1

)
u0(p1).

Straightforward computations show that the corresponding benefit of experimentation is

b2(p1, p2, u2) =
λ

r
p2 (g − s)

−
[
r + λ

r

p2

1− p1
f2
10

(
p2

1− p1

)
+

λ

r

p2 (1− p1 − p2)
(1− p1)2

(f2
10)

′
(

p2

1− p1

)]
u0(p1).

Under the action profile (1, 1), the PDE for player i’s payoff function,

λpi(1− p1 − p2)
∂ui

∂pi
+ λp3−i(1− p1 − p2)

∂ui

∂p3−i
+ (r + λ(p1 + p2))ui = (r + λ)pig + λp3−is,

has the general solution

ui(p1, p2) = pig + p3−i
λ

λ + r
s + f i

11

(
p2

p1

)
u0(p1 + p2).

Here, one finds

b2(p1, p2, u2) =
[

p2

p1 + p2
f2
11

(
p2

p1

)
− λ

r

p2

p1
(f2

11)
′
(

p2

p1

)]
u0(p1 + p2).

A.4 Auxiliary Results for the Three-State Model

The following lemma will be helpful in constructing Markov perfect equilibria in cutoff strategies.
It is a simple consequence of value matching.

Lemma A.2 Consider an interval I = ]p`, pr[ with 0 < p` < pr < 1 and a differentiable function
h: → ]0, 1[ with h(p1) < 1− p1 and −h(p1)

1−p1
≤ h′(p1) ≤ h(p1)

p1
. Assume that at any belief (p1, p2) on

the graph H of h, player 1 sets k1 = 1 while player 2 chooses

k2(p1) =
p1

h(p1)
h(p1) + (1− p1)h′(p1)
1− h(p1) + p1h′(p1)

.

Starting at a belief (p1, p2) ∈ H, posterior beliefs move along H until either a breakthrough occurs
or the belief (p`, h(p`)) is reached; fixing a continuation payoff at that belief, let U(p1) be player
2’s resulting payoff. For small ε > 0, let u↑2 be the solution to the equation u2 = s + β2 on
{(p1, p2): p` < p1 < pr, p2 < h(p1) + ε} with u↑2(p1, h(p1)) = U(p1) on I, and u↓2 the solution to the
equation u2 = s+β2 + b2− c2 on {(p1, p2): p` < p1 < pr, p2 > h(p1)− ε} with u↓2(p1, h(p1)) = U(p1)
on I. Then,

k2(p1)
[
b2(p1, h(p1), u

↑
2)− c2(h(p1))

]
= [1− k2(p1)]

[
b2(p1, h(p1), u

↓
2)− c2(h(p1))

]
= 0

on I.
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Proof: We suppress the argument p1 whenever this is expedient. The bounds on h′ ensure that
0 ≤ k2 ≤ 1. Moreover,

ṗ2 = λp2[p1 + p2k2 − k2] = h′λp1[p1 + p2k2 − 1] = h′ṗ1,

which means that starting from (p1, p2) ∈ H, the action profile (1, k2) makes posterior beliefs move
along H until a breakthrough occurs or the left endpoint of H is reached.

On I, the payoff U satisfies the ODE

rU = r{k2hg + [1− k2]s}+ λp1[s− U ] + λk2h[g − U ]− λp1[1− p1 − k2h]U ′.

As U(p1) = u↑2(p1, h(p1)) on I, we have

U ′(p1) =
∂u↑2
∂p1

(p1, h(p1)) +
∂u↑2
∂p2

(p1, h(p1))h′(p1).

Suppressing the argument (p1, h(p1)) in u↑2 and its derivatives, we can thus rewrite the ODE for U

as

ru↑2 = r{k2hg + [1− k2]s}+ λp1[s− u↑2] + λk2h[g − u↑2]− λp1[1− p1 − k2h]

(
∂u↑2
∂p1

+
∂u↑2
∂p2

h′
)

.

As p1[1− p1 − k2h]h′ = h[(1− h)k2 − p1], the previous equation is easily seen to transform into

u↑2(p1, h(p1)) = s + β2(p1, h(p1), u
↑
2) + k2(p1)

[
b2(p1, h(p1), u

↑
2)− c2(h(p1))

]
.

For p2 < h(p1), however, u↑2(p1, p2) = s+β2(p1, p2, u
↑
2). Continuity of u↑2 and its derivatives implies

k1(p1)
[
b2(p1, h(p1), u

↑
2)− c2(h(p1))

]
= 0.

Arguing exactly as above, one also shows that

u↓2(p1, h(p1)) = s + β2(p1, h(p1), u
↓
2) + k2(p1)

[
b2(p1, h(p1), u

↓
2)− c2(h(p1))

]
.

For p2 > h(p1), we now have u↓2(p1, p2) = s + β2(p1, p2, u
↓
2) + b2(p1, h(p1), u

↓
2) − c2(h(p1)). So

continuity of u↓2 and its derivatives implies [1− k2(p2)]
[
b2(p1, h(p1), u

↓
2)− c2(h(p1))

]
= 0.

While the previous result applies to all possible switching boundaries, the next lemma uses
necessary and sufficient conditions for optimality to derive constraints on the location of such a
boundary in equilibrium.

Lemma A.3 Let the players use an admissible strategy pair, giving player 2 the payoff function
u2. Fix a belief (p̂1, p̂2) with p̂1 > 0, p̂2 > 0 and 0 < p̂1 + p̂2 < 1, and define the rays R11 ={

(p1, p2): p̂1 < p1 < p̂1

p̂1+p̂2
, p2 = p̂2

p̂1
p1

}
and R10 =

{
(p1, p2): p̂1 < p1 < 1, p2 = p̂2

1−p̂1
(1− p1)

}
.

(1) Suppose that both players use the risky arm on R11, and that b2(p1, p2, u2) converges to
c2(p̂2) as (p1, p2) approaches (p̂1, p̂2) along R11. Then player 2 is playing a best response on R11 if
and only if p̂2 ≥ (r+λp̂1)s

(r+λ)g−λs .
(2) Suppose that player 1 uses the risky arm, and player 2 the safe arm, on R10, and that

b2(p1, p2, u2) converges to c2(p̂2) as (p1, p2) approaches (p̂1, p̂2) along R10. Then player 2 is playing
a best response on R10 if and only if p̂2 ≤ (r+λp̂1)s

(r+λ)g−λs .
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Proof: (1) Writing γ = p̂2

p̂1
, we have

b2(p1, p2, u2) =
[

γ

1 + γ
f2
11(γ)− λγ

r
(f2

11)
′(γ)

]
u0([1 + γ]p1)

on R11. By assumption, this converges to c2(p̂2) as p1 ↓ p̂1, so we have

b2(p1, p2, u2) =
c2(p̂2)

u0(p̂1 + p̂2)
u0([1 + γ]p1)

on R11. If p̂2 < pm, and hence c2(p̂2) > 0, convexity of u0([1 + γ]p1) and linearity of c2(γp1) imply
that b2 ≥ c2 on R11 if and only if

c2(p̂2)
u0(p̂1 + p̂2)

u′0(p̂1 + p̂2)[1 + γ] ≥ −γg.

This condition is easily seen to be equivalent to the inequality p̂2 ≥ (r+λp̂1)s
(r+λ)g−λs . If p̂2 ≥ pm, then

b2 is constant or increasing in p1 along R11, whereas c2 is decreasing, which implies b2 ≥ c2. We
complete the proof by noting that (r+λp̂1)s

(r+λ)g−λs < pm for all p̂1 < 1− pm.

(2) Writing η = p̂2

1−p̂1
, we have

b2(p1, p2, u2) =
λη

r
(g − s) (1− p1)− η

[
r + λ

r
f2
10(η) +

λ

r
(1− η) (f2

10)
′(η)

]
u0(p1)

on R10. By assumption, this converges to c2(p̂2) as p1 ↓ p̂1, so we have

b2(p1, p2, u2) =
λη

r
(g − s) (1− p1) +

[
c2(p̂2)− λ

r
(g − s) p̂2

]
u0(p1)
u0(p̂1)

on R10. If p̂2 > p∗, we have c2(p̂2) < λ
r (g − s) p̂2, so convexity of u0 and linearity of c2 imply that

b2 ≤ c2 on R10 if and only if

−λη

r
(g − s) +

[
c2(p̂2)− λ

r
(g − s) p̂2

]
u′0(p̂1)
u0(p̂1)

≤ ηg.

This is easily seen to be equivalent to the inequality p̂2 ≤ (r+λp̂1)s
(r+λ)g−λs . If p̂2 ≤ p∗, we have c2(p̂2) ≥

λ
r (g− s) p̂2, so b2 is constant or decreasing in p1 along R10, whereas c2 is increasing, which implies
b2 ≤ c2. We complete the proof by noting that (r+λp̂1)s

(r+λ)g−λs > p∗ for all p̂1 > 0.

B Admissible Pairs of Markov Strategies

We start with three examples.

Example 1: Suppose that player 1 plays risky at all beliefs p > 1
2 and safe otherwise, while player

2 plays risky at all beliefs p ≤ 1
2 and safe otherwise. Then there is no continuous function t 7→ pt

with p0 = 1
2 that satisfies equation (1) at all t ≥ 0. Suppose to the contrary that there exists such

a solution. If there is a time t such that pt > p0, then continuity implies that there exists a t′ < t

such that 1
2 < pt′ < pt and pτ > 1

2 for all τ in [t′, t]. Yet, k1(pτ ) = 1 and k2(pτ ) = 0 on [t′, t], so (1)
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implies pt < pt′ , a contradiction. The symmetric argument rules out the existence of a time t such
that pt < p0. So the only candidate for a solution to (1) is the constant function pt ≡ 1

2 . With
this function, k1(pt) = 0 and k2(pt) = 1 at all t, but then pt must be increasing by (1), another
contradiction. Starting from the prior belief p0 = 1

2 , therefore, there is no solution to the law of
motion for beliefs consistent with the above strategies, which means that these strategies do not
pin down the players’ actions.

Example 2: Suppose that player 1 plays risky whenever 1
4 ≤ p < 1

2 and safe whenever 1
2 ≤ p ≤ 3

4 ;
his behavior at other beliefs is irrelevant for this example. Player 2 always plays safe. For each
T ∈ [0,∞], the continuous function t 7→ pt given by

pt =





1
2 for 0 ≤ t ≤ T,

e−λ(t−T )

e−λ(t−T )+1
for t > T

then satisfies (1) up to the time T + τ at which it reaches the belief 1
4 . This means that the given

Markov strategies are consistent with a continuum of different solutions to the law of motion of
beliefs in continuous time. If we discretize time with fixed increment ∆t > 0 and approximate (2)
by

pt+∆t − pt = λ [k2(pt)− k1(pt)] pt (1− pt)∆t

for t = 0,∆t, 2∆t, . . . , however, there is a unique solution with p0 = 1
2 , namely pt = 1

2 for all
t = n∆t. The only continuous-time solution that can be approximated by the discrete-time solution
as ∆t ↓ 0 is the constant function pt ≡ 1

2 , corresponding to T = ∞.

Example 3: Suppose that player 1 plays risky and player 2 plays safe whenever 1
4 ≤ p < 1

2 , while
player 1 plays safe and player 2 plays risky whenever 1

2 ≤ p ≤ 3
4 . Behavior at other beliefs is again

irrelevant. Then there are two different solutions to (1) starting in p0 = 1
2 ,

pt =
e−λt

e−λt + 1
and pt =

eλt

eλt + 1
.

Only the latter is consistent with a discrete-time approximation as in Example 2.

In Examples 1 and 2, existence and uniqueness of solutions to the law of motion of beliefs
in a neighborhood of 1

2 can be restored by imposing specific one-sided continuity requirements on
the players’ strategies. In the first example, it suffices to make player 1’s strategy right-continuous
at the belief 1

2 , and in the second example, left-continuous. The appropriate one-sided continuity
requirement in these examples thus depends on the opponent’s strategy. In Example 3, moreover,
no combination of one-sided continuity requirements on the two players’ strategies can ensure
uniqueness. We therefore do not require uniqueness of the law of motion of beliefs in our definition
of admissible strategy pairs. Instead, whenever there are multiple continuous-time solutions, we
shall select the solution that is obtained in the limit of discrete-time approximations.

The following result shows that the problem of non-existence of solutions to the law of motion
of beliefs in continuous time would arise even if we were to restrict the space of strategies to less
complex functions such as cutoff strategies. It also establishes that the set of admissible strategy
pairs is not a product set.
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Lemma B.1 There exist admissible pairs of cutoff strategies (k1, k2) and (k̃1, k̃2) such that (k1, k̃2)
is inadmissible.

Proof: We take k−1
1 (1) = [14 , 1], k−1

2 (1) = [0, 3
4 ], k̃−1

1 (1) = ]23 , 1], and k̃−1
2 (1) = [0, 1

3 [ . Then each
of the pairs (k1, k2) and (k̃1, k̃2) implies a unique solution to the law of motion of beliefs from any
starting point, whereas for (k1, k̃2), non-existence of a solution starting from p0 = 1

3 follows exactly
as in Example 1.

B.1 Admissible Transitions

We say that the transition (k−1 , k−2 )—(k1, k2)—(k+
1 , k+

2 ) occurs at the belief p̂ ∈ ]0, 1[ if
limp↑p̂(k1(p), k2(p)) = (k−1 , k−2 ), (k1(p̂), k2(p̂)) = (k1, k2), limp↓p̂(k1(p), k2(p)) = (k+

1 , k+
2 ), and at

least one of the sets {k−1 , k1, k
+
1 } and {k−2 , k2, k

+
2 } contains more than one element. Given our def-

inition of strategies, each MPE has a finite number of transitions. We call a transition admissible
if it can arise under an admissible pair of Markov strategies.

We can rewrite (1) as

pt =
[
1 +

1− p0

p0
e−λ

∫ t
0 ∆(pτ ) dτ

]−1

, (B.1)

with ∆(p) = k2(p)−k1(p). For any belief p̂ in the open unit interval, we define ∆(p̂−) = limp↑p̂ ∆(p)
and ∆(p̂+) = limp↓p̂ ∆(p). For the purposes of this section, we shall consider two transitions at
the beliefs p̂ and p̃ as equivalent if ∆(p̂−) = ∆(p̃−), ∆(p̂) = ∆(p̃), and ∆(p̂+) = ∆(p̃+). For
the remainder of this section, we shall only be concerned with the so defined equivalence classes
of transitions which we denote by triplets (∆(p̂−),∆(p̂), ∆(p̂+)). Since ∆(p) ∈ {−1, 0, 1} for all
p ∈ [0, 1], there are 27 such triplets. Two of them, (−1,−1,−1) and (1, 1, 1), do not correspond
to any change in action profile. A third one, (0, 0, 0), corresponds to a transition if and only if
players switch between (1, 1) and (0, 0); the associated dynamics are trivial. A further eight classes,
(1, 0, 1), (1,−1, 1), (1,−1, 0), (0, 1,−1), (0,−1, 1), (−1, 1, 0), (−1, 1,−1) and (−1, 0,−1), are ruled
out by our requirement that both k−1

i (0) and k−1
i (1) be disjoint unions of a finite number of non-

degenerate intervals. For each of the remaining classes, we are interested in solutions to (B.1) with
initial condition p0 = p̂ (the belief at which the transition occurs).

No Solution

Arguing as in Example 1, it is straightforward to establish that there is no solution to (B.1) with
p0 = p̂ for the following classes:

• (1, 1,−1), (1,−1,−1), (1, 1, 0), (0, 1, 0), (0,−1, 0), (0,−1,−1).

A Continuum of Solutions

As in Example 2, there exists a continuum of solutions to (B.1) with p0 = p̂ for each of the following
classes:
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• (0, 0, 1), (−1, 0, 1), (−1, 0, 0).

We select the constant solution pt ≡ p̂ because this is the one obtained as the limit of any discrete-
time approximation.

Exactly Two Solutions

The logic of Example 3 applies to both the following classes:

• (−1, 1, 1) and (−1,−1, 1).

Consistency with a discrete-time approximation leads us to select the solution pt =
[
1 + 1−p̂

p̂ e−λt
]−1

for (−1, 1, 1) and the solution pt =
[
1 + 1−p̂

p̂ eλt
]−1

for (−1,−1, 1).

A Unique Solution

Each of the remaining five classes implies a unique continuous-time solution to the law of motion
of beliefs (equal to the limit of any discrete-time approximation) in a neighborhood of p̂:

• (1, 0, 0), (0, 1, 1), (−1,−1, 0), (0, 0,−1), (1, 0,−1).

Admissible Classes and Transitions

The following table lists the admissible classes and the transitions that they represent.

Class Transitions

(1, 0, 0) (0, 1)—(1, 1)—(1, 1), (0, 1)—(0, 0)—(0, 0)

(1, 0,−1) (0, 1)—(0, 0)—(1, 0), (0, 1)—(1, 1)—(1, 0)

(0, 1, 1) (0, 0)—(0, 1)—(0, 1), (1, 1)—(0, 1)—(0, 1)

(0, 0, 1) (0, 0)—(0, 0)—(0, 1), (1, 1)—(1, 1)—(0, 1)

(0, 0, 0) (0, 0)—(0, 0)—(1, 1), (0, 0)—(1, 1)—(1, 1),
(1, 1)—(0, 0)—(0, 0), (1, 1)—(1, 1)—(0, 0)

(0, 0,−1) (0, 0)—(0, 0)—(1, 0), (1, 1)—(1, 1)—(1, 0)

(−1, 1, 1) (1, 0)—(0, 1)—(0, 1)

(−1, 0, 1) (1, 0)—(0, 0)—(0, 1), (1, 0)—(1, 1)—(0, 1)

(−1, 0, 0) (1, 0)—(0, 0)—(0, 0), (1, 0)—(1, 1)—(1, 1)

(−1,−1, 1) (1, 0)—(1, 0)—(0, 1)

(−1,−1, 0) (1, 0)—(1, 0)—(0, 0), (1, 0)—(1, 0)—(1, 1)

Table 1: Admissible transitions

This table yields the following characterization of admissible strategy pairs.
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Lemma B.2 A pair of Markov strategies (k1, k2) is admissible if and only if all its finitely many
transitions appear in Table 1. Starting from a prior belief p0 equal to a transition point p̂, the evolu-

tion of beliefs is fully determined by ∆(p̂) = k2(p̂)−k1(p̂): pt ≡ p̂ if ∆(p̂) = 0; pt =
[
1 + 1−p̂

p̂ e−λt
]−1

if ∆(p̂) = 1; and pt =
[
1 + 1−p̂

p̂ eλt
]−1

if ∆(p̂) = −1. These solutions are valid as long as there is
no breakthrough on a risky arm and no other transition is reached.

Remarks

The six classes that do not admit a solution in continuous time would either lead to a short “blip”
in discrete time before reaching an absorbing state, as is the case with the classes (1, 1, 0), (0, 1, 0),
(0,−1, 0) and (0,−1,−1)), or to an oscillating solution, which, as we reduce period length, leads
to stasis in the limit, as is the case with the classes (1, 1,−1) and (1,−1,−1). While we rule these
classes out, the limits of their discrete-time solutions are still available through other admissible
strategy pairs. The continuous-time limit of the discrete-time solutions associated with the class
(1, 1, 0), for instance, is captured by the admissible class (1, 0, 0). Similarly, the limit of the discrete-
time oscillations implied by the classes (1, 1,−1) or (1,−1,−1) is captured by the admissible class
(1, 0,−1).

Each inadmissible strategy pair has but a finite number of inadmissible transitions. Each of
these can be made admissible by changing one player’s action at the belief where the transition
occurs. This means that for each inadmissible strategy pair (k1, k2), there exists an admissible pair
(k̃1, k̃2) such that k̃i differs from ki at finitely many points.

B.2 Locating Admissible Transitions

We first consider those admissible transitions in which one player’s action remains fixed.

Lemma B.3 The following statements hold for all Markov perfect equilibria:

(i) (0, 0)—(0, 0)—(1, 0) can only occur at the belief p∗; (1, 0)—(1, 0)—(0, 0) and (1, 0)—(0, 0)—
(0, 0) can only occur if g

s < 2r+λ
r+λ and only at beliefs in [1− p∗, p∗[ .

(ii) (0, 1)—(0, 0)—(0, 0) can only occur at the belief 1 − p∗; (0, 0)—(0, 1)—(0, 1) and (0, 0)—
(0, 0)—(0, 1) can only occur if g

s < 2r+λ
r+λ and only at beliefs in ]1− p∗, p∗].

(iii) (0, 1)—(1, 1)—(1, 1) can only occur at the belief pm; (1, 1)—(0, 1)—(0, 1) and (1, 1)—(1, 1)—
(0, 1) can only occur if g

s > 2 and only at beliefs in ]pm, 1− pm].

(iv) (1, 1)—(1, 1)—(1, 0) can only occur at the belief 1 − pm; (1, 0)—(1, 0)—(1, 1) and (1, 0)—
(1, 1)—(1, 1) can only occur if g

s > 2 and only at beliefs in [pm, 1− pm[ .

Proof: Suppose the transition (0, 0)—(0, 0)—(1, 0) occurs at p̂. Starting to the immediate right
of p̂, the dynamics of beliefs in the absence of a breakthrough converge to p̂, so u1 is continuous at
this belief. If p̂ > p∗, then u1 = s implies b1 > c1 to the immediate left of p̂ , so player 1 would
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deviate to playing risky there. If p̂ < p∗, then the solution to the ODE u1 = s + b1 − c1 with
u1(p̂) = s has u′1(p̂+) < 0, so player 1 would deviate to playing safe to the immediate right of p̂.
So we must have p̂ = p∗.

Now, suppose the transition (1, 0)—(1, 0)—(0, 0) occurs at p̂. If p̂ ≥ p∗, then u1 = s implies
b1 > c1 to the immediate right of p̂ , so player 1 would deviate to playing risky there. If p̂ < 1− p∗,
then u2 = s implies b2 > c2 to the immediate right of p̂ , so player 2 would deviate to playing risky
there. So we must have 1− p∗ ≤ p̂ < p∗, which requires p∗ > 1

2 , that is, g
s < 2r+λ

r+λ .
The same arguments apply to the transition (1, 0)—(0, 0)—(0, 0). This proves part (i). Part

(ii) is the mirror image of part (i) with the players’ roles reversed.
As to part (iii), suppose the transition (0, 1)—(1, 1)—(1, 1) occurs at p̂. Starting to the

immediate left of p̂, the dynamics of beliefs in the absence of a breakthrough converge to p̂, so
u1 is continuous at this belief. If p̂ < pm, then u1 = w1 implies b1 = 0 < c1 to the immediate right
of p̂, so player 1 would deviate to playing safe there. If p̂ > pm, then the solution to the ODE
u1 = s + β1 with u1(p̂) = w1(p̂) has u′1(p̂−) > w′1(p̂−), so player 1 would deviate to playing risky
to the immediate left of p̂. So we must have p̂ = pm (with smooth pasting).

Next, suppose the transition (1, 1)—(0, 1)—(0, 1) occurs at p̂. If p̂ ≤ pm, then u1 = w1 implies
b1 = 0 < c1 to the immediate left of p̂ , so player 1 would deviate to playing safe there. If p̂ > 1−pm,
then u2 = w2 implies b2 = 0 < c2 to the immediate left of p̂ , so player 2 would deviate to playing
safe there. So we must have pm < p̂ ≤ 1− pm, which requires pm < 1

2 , that is, g
s > 2.

The same arguments apply to the transition (1, 1)—(1, 1)—(0, 1). This proves part (iii) and,
by symmetry, part (iv).

Next, we pin down the conditions under which the admissible transitions in the classes
(1, 0,−1) and (−1, 0, 1) may occur in equilibrium.

Lemma B.4 The following statements hold for all Markov perfect equilibria. (i) The transi-
tion (0, 1)—(0, 0)—(1, 0) can only occur if g

s = 2r+λ
r+λ and only at belief 1

2 . (ii) The transition
(0, 1)—(1, 1)—(1, 0) can only occur if 2r+λ

r+λ ≤ g
s ≤ 2 and only at beliefs in [max{1 − pm, p∗},

min{pm, 1− p∗}]. (iii) The transition (1, 0)—(0, 0)—(0, 1) can only occur if g
s ≤ 2r+λ

r+λ and only at
beliefs in [1− p∗, p∗]. (iv) The transition (1, 0)—(1, 1)—(0, 1) can only occur if g

s ≥ 2 and only at
beliefs in [pm, 1− pm].

Proof: Suppose the transition (0, 1)—(0, 0)—(1, 0) occurs at belief p̂. As the dynamics of beliefs
are convergent, the players’ payoff functions are continuous at p̂ with u1(p̂) = u2(p̂) = s. If p̂ < p∗,
then the solution to the ODE u1 = s + b1 − c1 with u1(p̂) = s has u′1(p̂+) < 0, so player 1 would
deviate to playing safe to the immediate right of p̂. So we must have p̂ ≥ p∗. Immediately to the
left of p̂, u1 ≥ w1 by Lemma A.1. If p̂ > p∗, continuity implies u1(p̂) ≥ w1(p̂) > s, which is a
contradiction. This shows that p̂ = p∗. The analogous steps for player 2 establish that p̂ = 1− p∗.
So we must have p∗ = 1− p∗ = 1

2 , which requires g
s = 2r+λ

r+λ . This proves statement (i).
Suppose now that the transition (0, 1)—(1, 1)—(1, 0) occurs at belief p̂. As the dynamics of

beliefs are convergent, the players’ payoff functions are continuous at p̂ with ui(p̂) = wi(p̂). If
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p̂ > pm, then the solution to the ODE u1 = s + β1 with u1(p̂) = w1(p̂) has u′1(p̂−) > w′1(p̂), so
player 1 would deviate to playing risky to the immediate left of p̂. If p̂ < p∗, then w1(p̂) < s and,
by continuity, u1 < s to the immediate right of p̂, so player 1 would deviate to playing safe there.
This shows that p∗ ≤ p̂ ≤ pm. The analogous steps for player 2 establish that 1− pm ≤ p̂ ≤ 1− p∗.
So we must have p∗ ≤ 1 − p∗, which requires p∗ ≤ 1

2 , that is, g
s ≥ 2r+λ

r+λ . On the other hand, we
must have 1− pm ≤ pm, which requires pm > 1

2 , that is, g
s < 2. This proves statement (ii).

Next, suppose the transition (1, 0)—(0, 0)—(0, 1) occurs at belief p̂. This implies u1(p̂) =
u2(p̂) = s. Starting close to p̂, the dynamics of beliefs in the absence of a breakthrough are
divergent, so u1 and u2 need not be continuous at this belief. We can establish one-sided continuity,
though. If u1(p̂−) > s, player 1 would deviate to playing risky at p̂ (note that this deviation yields
an admissible transition again). If u1(p̂−) < s, player 1 would deviate to playing safe immediately
to the left of p̂. So u1 must be left-continuous at this belief. By symmetry, u2 must be right-
continuous. Now, if p̂ > p∗, then the solution to the ODE u1 = s + b1 − c1 with u1(p̂) = s has
u′1(p̂−) > 0, so player 1 would deviate to playing safe to the immediate left of p̂. This implies
p̂ ≤ p∗. The analogous argument for player 2 yields p̂ ≥ 1 − p∗. So we must have p∗ ≥ 1

2 , that is,
g
s ≤ 2r+λ

r+λ . This proves statement (iii).
Finally, suppose the transition (1, 0)—(1, 1)—(0, 1) occurs at belief p̂, so that u1(p̂) = w1(p̂)

and u2(p̂) = w2(p̂). If we had u1(p̂+) > w1(p̂), player 1 would deviate to playing safe at p̂ (yielding
another admissible transition again), so we must have u1(p̂+) ≤ w1(p̂). But play of (0, 1) to the
immediate right of p̂ requires u1 ≥ w1 there by Lemma A.1, hence u1(p̂+) ≤ w1(p̂). So u1 is
right-continuous at p̂, and u2 left-continuous by symmetry. Now, if p̂ < pm, then the solution to
the ODE u1 = s+β1 with u1(p̂) = w1(p̂) has u′1(p̂+) < w′1(p̂), so player 1 would deviate to playing
risky to the immediate right of p̂. This implies p̂ ≥ pm. The analogous argument for player 2 yields
p̂ ≤ 1− pm. So we must have pm ≤ 1

2 , that is, g
s ≥ 2. This proves statement (iv).

Finally, we show that transitions in the class (0, 0, 0) cannot arise in equilibrium.

Lemma B.5 The transitions (0, 0)—(0, 0)—(1, 1), (0, 0)—(1, 1)—(1, 1), (1, 1)—(0, 0)—(0, 0) and
(1, 1)—(1, 1)—(0, 0) do not occur in any Markov perfect equilibrium.

Proof: By symmetry, it is enough to establish the claim for the transitions (1, 1)—(0, 0)—(0, 0)
and (1, 1)—(1, 1)—(0, 0). Suppose that the former occurs at p̂, so that u1(p̂) = w1(p̂) and u2(p̂) =
w2(p̂). If p̂ > p∗, then w1(p̂) > s and player 1 has an incentive to deviate to playing risky at
p̂ (which yields an admissible transition again). If p̂ < p∗, then w1(p̂) < s and player 1 has an
incentive to deviate to playing safe immediately to the left of p̂. So we must have p̂ = p∗. But then
player 1 has an incentive to deviate to playing risky immediately to the right of p̂. An analogous
argument rules out the transition (1, 1)—(1, 1)—(0, 0).

The only admissible transitions that Lemmas B.3–B.5 do not cover are (1, 0)—(0, 1)—(0, 1)
and (1, 0)—(1, 0)—(0, 1). We shall see in the proofs of Propositions 4–7 that they can only occur
in those equilibria for intermediate stakes that involve jump discontinuities in the players’ value
functions.

45



C Proofs

Proof of Proposition 1

The policy (k1, k2) implies a well-defined law of motion for the posterior belief. The planner’s payoff
function from this policy is

u(p) =





1
2

[
s + (1− p)g + (s− p∗g) u0(1−p)

u0(1−p∗)

]
if p ≤ 1− p∗,

s if 1− p∗ ≤ p ≤ p∗,
1
2

[
s + pg + (s− p∗g) u0(p)

u0(p∗)

]
if p ≥ p∗.

This function satisfies value matching and smooth pasting at p∗ and 1− p∗, hence is of class C1. It
is decreasing on [0, 1− p∗] and increasing on [p∗, 1]. Moreover, u = s + B2− c2

2 on [0, 1− p∗], u = s

on [1− p∗, p∗], and u = s + B1 − c1
2 on [p∗, 1] (we drop the arguments for simplicity).

To show that u and the policy (k1, k2) solve the planner’s Bellman equation, and hence that
(k1, k2) is optimal, it is enough to establish that B1 < c1

2 and B2 > c2
2 on ]0, 1 − p∗[ , B1 < c1

2

and B2 < c2
2 on ]1 − p∗, p∗[ , and B1 > c1

2 and B2 < c2
2 on ]p∗, 1[ . Consider this last interval.

There, u = s + B1 − c1
2 and u > s (by monotonicity of u) immediately imply B1 > c1

2 . Next,
B2 = λ

r [g+s
2 −u]−B1 = λ

r [g+s
2 −u]−u+ s− c1

2 ; this is smaller than c2
2 if and only if u > u11, which

holds here since u > s and s > u11. The other two intervals are treated in a similar way.

Proof of Proposition 3

Suppose k−1
2 (1) = [0, p̂2[ with p̂2 ≤ p∗. Then, player 1’s payoff from the strategy k−1

1 (1) = ]p∗, 1] is
his single-agent payoff u1 = u∗1, that is, u1 = s on [0, p∗] and u1 = s+b1−c1 on [p∗, 1]. To show that
u1 and the policy k1 solve player 1’s Bellman equation given player 2’s strategy k2, and hence that
k1 is a best response to k2, it is enough to establish that b1 < c1 on ]0, p∗[ and b1 > c1 on ]p∗, 1[ . On
this last interval, u1 = s+b1−c1 and u1 > s (by monotonicity of u1 = u∗1) immediately imply b1 > c1.
On ]0, p∗[ , we have u1 = s and u′1 = 0, hence b1 − c1 = λ

r p(g − s)− (s− pg) = (r+λ)g−λs
r p− s < 0.

Next, suppose k−1
2 (1) = [0, p̂2] with p̂2 ≥ pm. Then, player 1’s payoff from the strategy

k−1
1 (1) = [pm, 1] is given by

u1(p) =





s + (1− pm) λ
r+λs u0(1−p)

u0(1−pm) if p ≤ pm,

pg + (1− p) λ
r+λs if pm ≤ p ≤ p̂2,

pg + (1− p̂2) λ
r+λs u0(p)

u0(p̂2) if p ≥ p̂2.

We note that u1 is of class C1 except at p̂2, where its first derivative jumps downward; moreover,
u1 is increasing and satisfies u1 = s + β1 on [0, pm[, u1 = s + β1 + b1 − c1 = w1 on [pm, p̂2], and
u1 = s + b1 − c1 on ]p̂2, 1]. On ]0, pm[ , it is easily verified that u1 > w1, so Lemma A.1 implies
b1 < c1. At pm, we have b1 = 0 = c1. On ]pm, p̂2[ , we have b1 = 0 > c1. On ]p̂2, 1[ , u1 = s+ b1− c1

and u1 > s (by monotonicity of u1) also imply b1 > c1. To complete the proof that k1 is a best
response to k2, it suffices to note that there are no admissible strategy pairs (k̃1, k2) for which
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k̃1(p̂2) = 0. In fact, any strategy k̃1 with k̃1(p̂2) = 0 would give rise to a transition in a class
(∆(p̂2−), 1, ∆(p̂2+)) with ∆(p̂2+) ∈ {−1, 0}, and none of these is admissible.

Finally, suppose k−1
2 (1) = [0, p̂2] with p∗ < p̂2 ≤ pm. Then player 1’s payoff from playing

k−1
1 (1) = [p̂2, 1] is given by

u1(p) =





s +
[
p̂2g + (1− p̂2) λ

r+λs− s
]

u0(1−p)
u0(1−p̂2) if p ≤ p̂2,

pg + (1− p̂2) λ
r+λs u0(p)

u0(p̂2) if p ≥ p̂2.

The function u1 is of class C1 except at p̂2, where its derivative jumps downward; moreover, it is
increasing and satisfies u1 = s + β1 on [0, p̂2[, u1(p̂2) = w1(p̂2) and u1 = s + b1 − c1 on ]p̂2, 1]. As
u1 > w1 on [0, p̂2[, we have b1 < c1 on this interval by Lemma A.1. On ]p̂2, 1], we have u1 > s,
hence b1 > c1. At the belief p̂2 itself, the same argument as in the previous paragraph establishes
that there are no admissible strategy pairs (k̃1, k2) for which k̃1(p̂2) = 0.

Analogous arguments apply to player 2.

Proof of Proposition 4

It remains to prove uniqueness of the equilibrium for g
s < 2r+λ

r+λ . Of the transitions covered by
Lemmas B.3–B.4, the following nine could occur: (0, 0)—(0, 0)—(1, 0) at p∗; (1, 0)—(1, 0)—(0, 0)
and (1, 0)—(0, 0)—(0, 0) in [1 − p∗, p∗[ ; (0, 1)—(0, 0)—(0, 0) at 1 − p∗; (0, 0)—(0, 1)—(0, 1) and
(0, 0)—(0, 0)—(0, 1) in ]1 − p∗, p∗]; (0, 1)—(1, 1)—(1, 1) at pm; (1, 1)—(1, 1)—(1, 0) at 1 − pm;
(1, 0)—(0, 0)—(0, 1) in [1 − p∗, p∗]. In addition, the transitions (1, 0)—(0, 1)—(0, 1) and (1, 0)—
(1, 0)—(0, 1) could potentially arise. Moving from left to right along the unit interval, we consider
possible sequences of transitions leading from (k1(0), k2(0)) = (0, 1) to (k1(1), k2(1)) = (1, 0).

Players have two ways to transition out of (k1(0), k2(0)) = (0, 1): either into (1, 1) at pm, or
into (0, 0) at 1− p∗. The former is incompatible with (k1(1), k2(1)) = (1, 0) as there is no possible
transition out of (1, 1) to the right of pm. So players have to transition from (0, 1) to (0, 0) at 1−p∗.

The available transitions out of (0, 0) lead to (0, 1) or (1, 0). The only transition out of (0, 1)
available to the right of 1−p∗ would lead to (1, 1) at pm, which we have already ruled out. Therefore,
players must transition out of (0, 0) into (1, 0) at p∗.

To the right of p∗, the only available transitions out of (1, 0) lead into (0, 1), and the only
available transition out of (0, 1) leads into (1, 1), which we have ruled out before. So there cannot
be any further transition to the right of p∗.

Proof of Proposition 5

For uniqueness when g
s ≥ 2, we note that of the transitions covered in Lemmas B.3–B.4, the

following nine might occur: (0, 0)—(0, 0)—(1, 0) at p∗; (0, 1)—(0, 0)—(0, 0) at 1 − p∗; (0, 1)—
(1, 1)—(1, 1) at pm; (1, 1)—(0, 1)—(0, 1) and (1, 1)—(1, 1)—(0, 1) in ]pm, 1 − pm]; (1, 1)—(1, 1)—
(1, 0) at 1− pm; (1, 0)—(1, 0)—(1, 1) and (1, 0)—(1, 1)—(1, 1) in [pm, 1− pm[ ; (1, 0)—(1, 1)—(0, 1)
in [pm, 1 − pm]. In addition, the transitions (1, 0)—(0, 1)—(0, 1) and (1, 0)—(1, 0)—(0, 1) could
potentially arise.
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Players have two ways to transition out of (k1(0), k2(0)) = (0, 1): either into (0, 0) at 1 − p∗,
or into (1, 1) at pm. The former is incompatible with (k1(1), k2(1)) = (1, 0) as there is no possible
transition out of (0, 0) to the right of 1 − p∗. Therefore, players have to transition from (0, 1) to
(1, 1) at pm.

The available transitions out of (1, 1) lead to (0, 1) or (1, 0). The only transition out of (0, 1)
available to the right of pm would lead to (0, 0) at 1 − p∗, which we have already ruled out. So
players must transition out of (1, 1) into (1, 0) at 1− pm.

To the right of 1− pm, the only available transitions out of (1, 0) lead into (0, 1), and the only
available transition out of (0, 1) leads into (0, 0), which we have ruled out before. So there cannot
be any further transition to the right of 1− pm.

Proof of Proposition 7

We fix one of the beliefs p̃(`) and introduce two auxiliary functions. Let y : [p̂(`−1), 1] → [s, g] be
the unique solution of the ODE y(p) = s + b1(p, y)− c1(p) with initial value y(p̂(`−1)) = w1(p̂(`−1)),
and z : [0, p̂(`)] → [s, g] the unique solution of the ODE z(p) = s + β1(p, z) with terminal value
z(p̂(`)) = w1(p̂(`)). As y(p) = pg + Cu0(p) and z(p) = s + Du0(1 − p) for some positive constants
C and D, both functions are strictly increasing and strictly convex. As y(1) = g = w1(1) and
z(0) = s > w1(0), convexity implies y < w1 on ]p̂(`−1), 1[ and z > w1 on ]0, p̂(`)[ . Player
1’s payoff function satisfies u1 = y on [p̂(`−1), p̃(`)[ and u1 = z on ]p̃(`), p̂(`)]. This implies that
u1(p̃(`)−) = y(p̃(`)) < w1(p̃(`)) < z(p̃(`)) = u1(p̃(`)+), so u1 has a jump discontinuity at p̃(`).

If the action profile played at p̃(`) is (0, 1), then u1(p̃(`)) = z(p̃(`)) > w1(p̃(`)), and player 1
has no incentive to deviate since the action profile (1, 1) would give him the payoff w1(p̃(`)). If the
action profile played at p̃(`) is (1, 0), then u1(p̃(`)) = y(p̃(`)) > s, and player 1 has no incentive to
deviate since the action profile (0, 0) would give him the payoff s. In either case, player 1 thus plays
a best response.

Analogous arguments apply to player 2. This establishes that the strategy pairs described in
the proposition constitute Markov perfect equilibria and that both players’ payoffs jump at each of
the beliefs p̃(`).

To see that there are no other equilibria, we note that of the transitions covered by Lemmas
B.3–B.4 the following five could occur: (0, 0)—(0, 0)—(1, 0) at p∗; (0, 1)—(0, 0)—(0, 0) at 1 − p∗;
(0, 1)—(1, 1)—(1, 1) at pm; (1, 1)—(1, 1)—(1, 0) at 1 − pm; (0, 1)—(1, 1)—(1, 0) in I = [max{1 −
pm, p∗},min{pm, 1−p∗}]. In addition, the transitions (1, 0)—(0, 1)—(0, 1) and (1, 0)—(1, 0)—(0, 1)
could potentially arise.

Players have three ways to transition out of (k1(0), k2(0)) = (0, 1): either into (0, 0) at 1− p∗,
or into (1, 1) at pm, or into (1, 0) at some belief in I. The transition into (0, 0) is incompatible
with (k1(1), k2(1)) = (1, 0) as there is no possible transition out of (0, 0) to the right of 1 − p∗.
The transition into (1, 1) is also incompatible with (k1(1), k2(1)) = (1, 0) as there is no possible
transition out of (1, 1) to the right of pm. Therefore, there must be a belief p̂min ∈ I such that the
action profile (0, 1) is played on [0, p̂min[ and the transition (0, 1)—(1, 1)—(1, 0) occurs at p̂min.
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By the same sequence of arguments started at (k1(1), k2(1)) = (1, 0), there must also exist a
belief p̂max ≥ p̂min in I such that the action profile (1, 0) is played on ]p̂max, 1] and the transition
(0, 1)—(1, 1)—(1, 0) occurs at p̂max. If p̂min < p̂max, finally, any two “adjacent” transitions (0, 1)—
(1, 1)—(1, 0) must be separated by one transition (1, 0)—(0, 1)—(0, 1) or (1, 0)—(1, 0)—(0, 1).

Proof of Proposition 9

When stakes are high, the expected delay will be maximal for p0 = 1 − p because this yields the
largest possible interval of beliefs on which equilibrium play differs from the efficient solution, and at
the same time minimizes the expected time until uncertainty is resolved in the efficient solution. At
the belief 1− p, the planner will play the good risky arm for sure until it produces a breakthrough;
the corresponding expected time to breakthrough is t̂ = 1

λ . The expected equilibrium time to
breakthrough is t̃ = (1 − p)t̂ + p(δ + t̂) = t̂ + pδ, where δ is the time needed to slide from 1 − p

to 1 − pm, conditional on risky arm 2 being good. Bayes’ rule for the action profile (1, 0) implies
δ = 1

λ

[
ln 1−p

p − ln 1−pm

pm

]
. Writing x = g

s , we therefore have

t̃− t̂

t̂
= p

[
ln

1− p

p
− ln

1− pm

pm

]
=

r + λ

(r + λ)x + λ
ln

(
1 +

λ

r + λ

1
x− 1

)
.

As this decreases in x, an upper bound on the relative delay for high stakes is obtained by setting
x = 2, so that

t̃− t̂

t̂
≤ r + λ

2r + 3λ
ln

(
1 +

λ

r + λ

)
≤ λ

2r + 3λ
<

1
3

by the fact that ln(1 + y) ≤ y for all y ≥ 0.
Turning to intermediate stakes, we may assume that pm < 1 − p, for otherwise there exists

an equilibrium that achieves the efficient outcome (see the discussion leading up to Proposition 10
in Section 4.5). We now calculate the delay that arises for p0 = 1 − p in the equilibrium in cutoff
strategies defined by p̂ = pm, that is, the worst possible delay in the best possible equilibrium.
Proceeding as above, we find

t̃− t̂

t̂
= p

[
ln

1− p

p
− ln

pm

1− pm

]
=

r + λ

(r + λ)x + λ
ln

(
x− r

r + λ

)
.

Using the fact that ln z ≤ z − 1 for all z > 0, we obtain

t̃− t̂

t̂
≤ r + λ

(r + λ)x + λ

(
x− 2r + λ

r + λ

)
.

As the right-hand side increases in x, and x < 2 for intermediate stakes, this yields the same upper
bound as for high stakes.

Proof of Proposition 10

For high stakes, the players’ average equilibrium payoff function u is strictly below the planner’s
value function on ]1 − pm, 1[ . To the right of 1 − p̄, the two functions differ only with respect to
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the constant that premultiplies the solution u0(p) of the homogenous ODE for the action profile
(1, 0); in particular, both functions and their difference are monotonic there. The minimum of the
average payoff is therefore attained at some belief p̆ strictly in between 1− pm and 1− p̄, and the
quotient (u(p̆)− s)/(u11 − s) is the minimum over all beliefs of our relative welfare measure.

For p ≥ 1− pm, we have u(p) = (s + pg)/2 + Cu0(p) with some positive constant C, and so

u′(p̆) =
g

2
− C

µ + p̆

p̆(1− p̆)
u0(p̆) = 0,

where µ = r
λ . Solving for Cu0(p̆), we obtain

u(p̆) =
s + p̆g

2
+

p̆(1− p̆)
µ + p̆

g

2
,

which is easily seen to be increasing in p̆. As p̆ > 1− pm, we thus have

u(p̆) >
s + (1− pm)g

2
+

pm(1− pm)
µ + 1− pm

g

2
=

g

2
+

(g − s)s
2[(µ + 1)g − s]

and, with x = g
s ≥ 2 denoting the stakes involved,

u(p̆)− s

u11 − s
>

x + x−1
(µ+1)x−1 − 2

x + 1
µ+1 − 2

= 1− µ

(µ + 1)2(x− 1)2 − µ2
≥ 1− µ

(µ + 1)2 − µ2
.

The last term on the right-hand side decreases in µ and approaches the limit 1
2 as µ →∞.

For intermediate stakes, we only need to cover the case where pm < 1− p, so that the efficient
outcome cannot be achieved for initial beliefs below 1−pm or above pm. By symmetry, it is enough
to consider the latter scenario. Given a prior above pm, the players’ average payoff function u in
the MPE in cutoff strategies defined by p̂ = pm is strictly below the planner’s value function on
]pm, 1[ . Arguing as above and exploiting the fact that p̆ > pm, we now find

u(p̆) >
s + pmg

2
+

pm(1− pm)
µ + pm

g

2
= s +

(g − s)s
2(µg + s)

and, writing x = g
s again,

u(p̆)− s

u11 − s
>

x−1
µx+1

x + 1
µ+1 − 2

.

As pm < 1− p, we have µx + 1 < (µ + 1)(x− 1)x, and so

u(p̆)− s

u11 − s
>

1
[(µ + 1)(x− 2) + 1]x

.

The right-hand side exceeds 1
2 since 2µ+1

µ+1 < x < 2, and hence 0 < (µ + 1)(x − 2) + 1 < 1, for
intermediate stakes.
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Proof of Proposition 11

Low stakes. Let g
s ≤ 2r+λ

r+λ , so that p∗ ≥ 1
2 . If players behave as described in the main text,

their payoff functions coincide with the respective single-agent value functions, and either player is
trivially playing a best response.

Intermediate stakes. Let 2r+λ
r+λ < g

s ≤ 2, so that p∗ < 1
2 ≤ pm. It suffices to construct the players’

payoff functions and verify the mutual best-response property on the set of beliefs where p1 ≥ p2.
At all such beliefs with p1 ≤ p∗, we trivially have u1 = u2 = s, and both players are clearly playing
a best response there.

Starting from a prior belief in the interior of the triangle with corners (p∗, 0), (p∗, p∗) and
(1, 0), the action profile (1, 0) makes posterior beliefs move up a ray p2 = x (1− p1) with x ≤ p∗

1−p∗

until either player 1 experiences a breakthrough or all experimentation stops at p1 = p∗. So player
2 will never use his risky arm and earns a sure payoff of s; as p2 < p∗, he is playing a best response.
Player 1 achieves a payoff equal to the single-agent optimum, hence is playing a best response as
well.

For p ∈ ]p∗, 1
2 ], we have

u1(p, p) = u2(p, p) = p

[
g +

λ

r + λ
s

]
+ C∗u0(2p),

where
C∗u0(2p∗) = s− p∗

[
g +

λ

r + λ
s

]
=

λ

r
p∗

[
g − 2r + λ

r + λ
s

]
> 0.

This implies that the above payoff is a strictly convex function of p. As p tends to p∗ from above,
moreover, this payoff reaches the level s with a slope of zero. As a consequence, it is increasing in
p on ]p∗, 1

2 ] and exceeds s there.
For p1 > max{p∗, p2}, we write p2 = x (1 − p1) with x > p∗

1−p∗ . We recall the general form
of the players’ payoff functions from Appendix A.3 and determine f i

10(x) by value matching along
the diagonal line segment where the action profile (1, 1) is played. For given x, the corresponding
point on this line segment is ( x

x+1 , x
x+1), and the players’ common payoff at this point is

x

x + 1

[
g +

λ

r + λ
s

]
+ C∗u0

(
2x

x + 1

)
.

Equating this with player 1’s payoff from the action profile (1, 0) at the belief ( x
x+1 , x

x+1),

x

x + 1
g + f1

10(x)u0

(
x

x + 1

)
,

yields

f1
10(x) =

{
x

x + 1
λ

r + λ
s + C∗u0

(
2x

x + 1

)}/
u0

(
x

x + 1

)
=

λ

r + λ
s x

r+λ
λ + C∗2−

r
λ (1− x)

r+λ
λ .

For player 2, we find

f2
10(x) =

(
x

[
g − r

r + λ
s

]
− s

)
x

r
λ + C∗2−

r
λ (1− x)

r+λ
λ .
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To verify that player 1 is playing a best response when p1 > max{p∗, p2}, we note that
u1 = s + b1 − c1, so we only need to prove that u1 > s. As u1 > s when p1 = p2 > p∗, it suffices to
show that p1g + f1

10(x)u0(p1) is increasing in p1 for p1 > x
x+1 . By convexity of u0, it is enough to

show that g + f1
10(x)u′0(p1) ≥ 0 at p1 = x

x+1 or, equivalently,

{
λ

r + λ
s + C∗ x + 1

x
u0

(
2x

x + 1

)}(
r

λ
+

r + λ

λ
x

)
≤ g.

As 2p∗ < 2x
x+1 ≤ 1 and u0(1) = 0, convexity of u0 implies

u0

(
2x

x + 1

)
≤ 1− 2x

x+1

1− 2p∗
u0(2p∗).

Using the definition of C∗ and the fact that 1 − 2p∗ = r+λ
rs p∗

(
g − 2r+λ

r+λ s
)
, we thus find that it is

enough to show that (
r

r + λ

1
x

+ 1
)

s ≤ g.

The left-hand side of this inequality is obviously decreasing in x, and is easily seen to assume the
value g at x = p∗

1−p∗ = r
r+λ

s
g−s . The inequality thus holds for all x in the relevant range. This

completes the proof that player 1 is playing a best response at all beliefs such that p1 > max{p∗, p2}.
To establish that player 2 is also playing a best response at these beliefs, we can invoke Lemmas

A.2 and A.3. The former implies that b2 tends to c2 as we approach the diagonal p2 = p1 from
below, while part (2) of the latter implies that b2 < c2 below the diagonal. In fact, p2 = p1 implies
p2 ≤ (r+λp1)s

(r+λ)g−λs for intermediate stakes.
Finally, given player 2’s strategy, admissibility rules out any strategy k1 for player 1 such

that k1(p, p) < 1 for some p ∈ ]p∗, 1
2 ]. To see this, we note that any such strategy would imply

ṗ2 = λp[pk1(p, p) + p − 1] < 0 in the point (p, p). For p2 < p1, however, k2(p1, p2) = 0 implies
ṗ2 = λp2p1k1(p1, p2) ≥ 0. Starting in (p, p), therefore, there is no solution to the law of motion for
beliefs unless k1(p, p) = 1. The symmetric argument applies to player 2.

High stakes. Let g
s > 2, so that pm < 1

2 . At all beliefs such that p2 ≤ p1 ≤ p̃ or p2 ≤ p̃
1−p̃ p2 ≤ p̃,

the players’ actions and payoffs coincide with those in the MPE for intermediate stakes, so both
players are playing a best response there.

For p1 > p̃ and p2 > p̃
1−p̃ p1, Lemma A.2 implies that b2 tends to c2 as we approach player

2’s switching boundary, so Lemma A.3 implies that b2 < c2 whenever player 1 alone is playing
risky, and b2 > c2 whenever both players play risky. By symmetry, this also means that b1 > c1

whenever both players play risky. The verification of the best-response property is thus complete
if we can show that player 1 plays a best response when p1 > p̃ and p̃

1−p̃ p1 < p2 < (r+λp1)s
(r+λ)g−s . As

u1 = s + b1 − c1 at these beliefs, we only need to show that u1 > s. This step is similar to the
intermediate-stakes case and therefore omitted.

52



References
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