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Abstract

We study a two-player game of strategic experimentation with private

information in which agents choose the timing of risky investments.

Agents learn about future returns through privately observed signals,

others’ investment decisions and from public experimentation outcomes

when returns are realized. We characterize symmetric equilibria, and

relate the extent of strategic delay of investments in equilibrium to the

primitives of the information structure. Agents invest without delay in

equilibrium when the most optimistic interim belief exceeds a threshold.

Otherwise, delay in investments induces a learning feedback that may

either raise or depress beliefs and investment choices. We show that

private information in strategic experimentation can increase ex-ante

welfare.
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1 Introduction

Learning from peer experience is an important contributor to the proliferation

of innovative technology, and as such promotes economic development and

growth. That observational learning plays a crucial role in the diffusion of

innovation is empirically well-documented. Health professionals learn about

medical innovations from the experience of their colleagues (Becker, 1970),

households learn about new consumer products from friends and neighbors

(Liu et al., 2014; Goolsbee et al., 2002), farmers learn about the qualities

of new types of crop from the performance of their peers (Conley and Udry,

2010) and law-makers take into account the experience with legislation in other

countries (Aidt and Jensen, 2009).

Theoretical literature has extensively studied the effects of observational

learning from peers on individual incentives to engage in costly experimenta-

tion (e.g., Bolton and Harris, 1999; Keller and Rady, 2010; Klein and Rady,

2011; Keller and Rady, 2015). In these models, agents continuously decide

how much of a valuable resource to invest into a technology with returns drawn

from an uncertain distribution. This literature typically presumes symmetry

in information, which, from an empirical perspective, is a relevant abstraction

from reality. Differences in information, in schooling or personal experience,

for example, have been found to be an important determinant in the adoption

of new technologies (Foster and Rosenzweig, 2010). In this paper, we propose

a tractable model of strategic experimentation with private information. Two

decision-makers decide on the timing of an investment into a technology that

generates returns drawn from a fixed distribution. The distribution of returns

is the same for both agents, but not known to either of them. Each decision

maker has access to some initial private information about future returns. Af-

ter an agent makes the investment, he receives a continuous payoff flow. If the

technology is of high quality, he receives a positive return until he stops ex-
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perimenting with the technology. However, if the technology is of low quality,

its use will inevitably lead to a disastrous failure associated with a significant

loss for the owner.

The specification of our model is both natural and tractable. Our model

captures important features of many real-world settings that involve an oppor-

tunity to invest in a new technology (e.g., a drug, chemical, mining procedure)

with obvious benefits but unknown, and potentially disastrous, side-effects.

The presence of asymmetric information and set-up costs in such a setting

gives rise to an initial signaling stage. Due to our bad-news learning speci-

fication (Keller and Rady, 2015), agents become more optimistic over time,

and experimentation will typically continue after investment unless a failure

occurs, in which case the state is revealed and all experimentation stops. Bad-

news learning, combined with strategic investment timing in the presence of

set-up costs, thus tractably separates the game into an early signaling phase

and a later experimentation phase.

We characterize symmetric equilibria in our game. We show that the way

private information is aggregated in equilibrium crucially depends on the most

optimistic interim belief. If this belief exceeds a certain threshold, optimistic

agents invest without delay, so that all private information that is revealed in

equilibrium is revealed in a single lump at time zero. If the most optimistic

interim belief lies below the threshold, even optimistic agents delay their ini-

tial investment and private information is aggregated gradually. The speed at

which information is conveyed through signaling varies with time and its evolu-

tion depends on the prior belief. For optimistic prior beliefs exceeding a given

threshold, learning accelerates and its speed eventually shoots towards infinity,

so that all information is conveyed by some finite point in time. Otherwise

learning gradually slows down and eventually goes to zero as time approaches

infinity.

Inefficiencies arise in our setting because players would rather invest sec-

ond, leading to under-investment in a classical war of attrition. A key finding

in our paper is that asymmetric information can mitigate these inefficiencies.

Indeed, with asymmetric information, players on the one hand want to signal
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optimism, so as to encourage investment by their opponent. On the other

hand, uncertainty about his opponent’s type leads players to keep the opti-

mistic type of the opponent indifferent in mixed-strategy equilibrium, whatever

his (unknown) true type may be; with public information, by contrast, it is

the actual type of the opponent that is kept indifferent. The higher investment

rates stemming from these combined two effects will, for certain parameters,

over-compensate for the losses arising from players’ less precise information

under private information and thus lead to higher ex-ante welfare.

A relatively small number of papers have investigated the role of private

information in games of informational externalities.1 Rosenberg et al. (2013)

investigate a game of strategic experimentation with exponential two-armed

bandits, where players’ action choices are public information, while the out-

comes of these actions are private information. A player’s switch to the safe

arm is irreversible. They show that, in their setting, public information is

unequivocally good for welfare. Their setup differs from ours inter alia by the

fact that their players accrue private information over time, while ours are

privately informed at the outset. Dong (2017) considers a good-news learning

model in the spirit of Keller et al. (2005) in which it is commonly known that

one of the two players is privately informed at the outset. Thomas (2019)

also analyzes a two-player game with exponential bandits à la Keller et al.

(2005), where however there is only one safe arm between the players. In

her setting, the quality of the risky arms are independent across players and

payoffs are privately observed. Players have an interest in convincing their

opponent that their risky arm has already produced a success by delaying

stopping. In equilibrium, players mix in a way that tempers the increase in

their opponent’s belief that they have already achieved a success. Heidhues

et al. (2015) investigate the problem with public reversible actions and private

payoffs while allowing for cheap-talk communication among players. They

1The problem of strategic information acquisition in bandit games has been introduced
by Bolton and Harris (1999) in a Brownian-motion environment. Keller et al. (2005) have
extended the analysis to a Poisson setting, while Keller and Rady (2015) have introduced
“bad-news” Poisson events. Private information in this setting has also been analyzed in
Rosenberg et al. (2007).
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show that equilibria with public information can always be replicated under

private information so that private information is unequivocally good for wel-

fare. This conclusion heavily depends on their assumption that players can

communicate with each other. In contrast, Bonatti and Hörner (2011) ana-

lyze the case of unobservable and reversible actions and observable outcomes

and find that private information boosts welfare in their setting. The reason

is that, with observable actions, shirking by a player will render the other

players more optimistic, and hence more willing to pick up the slack. This,

in turn, makes deviating more attractive under public information. Bonatti

and Hörner (2017), by contrast, introduce unobservable actions into Keller

and Rady (2015)’s bad-news setting, and find that private information about

players’ action choices is unequivocally bad for welfare in that setting. Indeed,

shirking with observable actions makes the other players less optimistic. Thus,

players have stronger incentives to work with public than with private infor-

mation in a bad-news setting. In our setting, by contrast, we find that private

information about the players’ initial signals may enhance welfare even in a

context of bad-news learning.

In Chamley and Gale (1994) and Murto and Välimäki (2011, 2013), infor-

mation is dispersed throughout society, and agents only make a single decision,

i.e., when to exit the game. Once a player has exited, he is no longer affected

by others’ decisions. As in our setting, information is inefficiently aggregated

because investors have incentives to delay their exit decision so as to acquire

more information by observing the behavior of others. The players do not

observe the results of their partners’ experimentation directly. In our setting,

by contrast, players continue to be affected by others’ actions after making

their investment decision and thus have incentives to influence their partner’s

actions and beliefs when making that decision.

A closely related paper is Décamps and Mariotti (2004), who study a two-

player game of irreversible investments. Private information in their setting,

however, pertains to the players’ idiosyncratic investment costs, while all in-

formation concerning the common quality of the investment opportunity is

public. Since, as in our setting, players get additional (public) information
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after the other player has invested, they prefer the role of the follower and

thus have incentives to convince each other that their own costs of invest-

ment are high. Once they have made their irreversible investment decision,

Décamps and Mariotti (2004)’s players do not care about their partner’s ac-

tions any longer. In our setting, however, a player prefers his partner to invest

as soon as possible, even conditionally on having invested himself. Thus, in

contrast to Décamps and Mariotti (2004), our players have incentives to ren-

der their partners as optimistic as possible concerning the common investment

prospects.

Moscarini and Squintani (2010) consider a model of a winner-takes-all R&D

competition in which firms observe an initial private signal about the unknown

type of a research project, which is drawn from a continuous distribution.

Over time, firms learn about the project’s type from their competitor’s actions

and the lack of success in the past, deciding when to exit irreversibly. They

show that the aggregate duration of experimentation is longer under private

information, when firms may also exit simultaneously, a non-generic outcome

under public information. Since players take no action besides deciding when

to exit irreversibly, their action choice is not impacted by signaling motives,

in contrast to our setting.

Wagner (2018) and Margaria (2017) analyze related settings, which are also

distinguished from our setting by the signaling role of experimentation. Indeed,

in Wagner (2018), all learning and experimentation stop after an investment

has been made. In Margaria (2017), agents’ private signals arrive over time

and represent fully conclusive bad news. Therefore, when an agent invests,

it will be commonly known that he has not received a bad signal before, and

there is nothing more left to learn from him.

The potential welfare improvement of private information is related to the

“smoothing effect of uncertainty”(Morris and Shin, 2002). Teoh (1997) demon-

strates this effect in a model of public-good provision, where the marginal re-

turn to agents’ investments is determined by an uncertain state of the world.

The author shows that non-disclosure of information may increase ex-ante

welfare when the investment has marginally diminishing returns because the
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loss resulting from a reduction in investment after the release of bad news

outweighs the benefits from increased investment when the information is fa-

vorable. This is the same mechanism that drives the main result in our paper:

when bad news is publicly disclosed, free-riding and leadership-aversion in-

crease, leading to an over-proportional reduction in the expected value of an

investment.

2 Model

There are two agents, indexed i = 1, 2. Time t ∈ R+ is continuous, with

an infinite horizon. Future payoffs are discounted at the common discount

rate r > 0. Each agent decides when to initiate a project which generates

a stochastic payoff stream that depends on an unknown state of the world

θ ∈ {G,B}, which is either “good” (θ = G) or “bad” (θ = B). Agents can

choose to start or end the project at any time, but every time the project is

initiated, an investment of size I ∈ (0, y/r) is required. While the project is

operational, it yields a flow return of y > 0 in either state. However, when

the state is bad, accidents occur at random times corresponding to the jump

times of a time-homogeneous Poisson process with parameter γ > 0. Accidents

never occur in state G. Conditionally on the state being B, the arrival times

of accidents are independent across agents. An agent whose project causes an

accident incurs a lump-sum cost of c > 0. The agents’ common prior belief

that the state is G is p0 ∈ (0, 1). At the outset, each agent i = 1, 2 receives

a signal si ∈ {g, b}, which provides information about the realization of the

state. Either agent’s signal is correct (i.e., is equal to g in state G and equal

to b in state B) with probability ρ ∈ (1/2, 1). We assume that conditionally

on θ, the signal realizations are independent across agents. Because signal g is

positively correlated with the good state G, and b is positively correlated with

the bad state B, we call g a “good” signal and b a “bad” signal. Moreover,

we commonly call an agent who observed a good signal “optimistic” and an

agent who observed a bad signal “pessimistic.”

We model the continuous-time environment as a repeated stopping game
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with multiple “phases”. At the beginning of the first phase, the agents decide

how long to wait before making the investment, conditionally on the other

agent not having invested yet. The initial stage ends after the first agent

invests or both invest simultaneously. If only one agent invests, then the agent

who invested is called the “leader”, and the other the “follower”. In the second

phase, each agent who invested decides if and when to exit while an agent who

did not invest decides when to enter, each conditionally on the other agent

not moving first. Later phases proceed in a similar fashion. We assume that

γc > y, so that after an accident has arrived and players have learned that

θ = B, it is a dominant action for players not to invest, or, respectively, to

exit a prior investment immediately. We take this as given in our subsequent

analysis, and treat all histories following an accident as terminal histories.

Formally, the structure of the game is as follows. We define an investment

history at time t ≥ 0 to be a profile ht = ((i1, τ1), . . . , (int , τnt)) with 0 ≤ τ1 ≤
. . . ≤ τnt ≤ t, where τk for each k = 1, . . . , nt represents a “switching time”

at which agent ik ∈ {1, 2} has changed his investment decision, and nt ∈ N
represents the total number of instances of such changes in the past. We refer

to nt as the length of history ht. A behavioral strategy for agent i is then

given by a family of cumulative distribution functions {Fi(·|si, ht)}ht∈Ht with

Fi(t
′|si, ht) = 0 for all t′ < τnt . Here, Fi(t

′|si, ht) represents the probability

that agent i with signal si takes action (invests or exits) before or at time

t′ ∈ [τnt ,∞] following investment history ht, conditionally on the other agent

−i not taking action before t′. A profile of behavioral strategies induces a

distribution over switching times for each agent i. Denoting by (τ ik)k∈N0 the

random investment and exit times for player i, the expected normalized payoff

for agent i at any time t is

Et

[
∞∑
k=0

(∫ τ i2k+1∨t

τ i2k∨t
e−r(ξ−t)r(y − 1{θ=B}γc)dξ − 1{τ i2k+1>t}e

−r(τ i2k+1−t)rI

) ∣∣∣ si, ht] .
(1)

We say that an agent is “invested” at any history at which he has performed

an odd number of switches. Otherwise this agent is called “out”.
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Our solution concept is symmetric perfect Bayesian equilibrium. A perfect

Bayesian equilibrium is a pair of behavioral strategies, together with a system

of beliefs for each agent, which assigns a probability distribution over signals

and the state of the world at each history, such that (i) each agent’s strategy

maximizes his expected payoff, given his belief over the state and the other

agent’s signal and (ii) beliefs are updated via Bayes’ rule at any history that

lies in the support of the distribution over histories induced by the agents’

strategies. We shall say that a perfect Bayesian equilibrium is symmetric if

the players’ equilibrium strategies prescribe the same (mixed) action whenever

they have the same beliefs and are in the same mode, that is, they are either

both invested or both out.

Throughout, we denote by pt the (history-dependent) public posterior belief

that θ = G at time t, i.e., the belief held by a hypothetical outside observer,

who started out with a prior belief of p0 and observed the public history but

did not know about the initial signals. By the same token, we denote by qit

the public posterior belief assigned to agent i’s type being g (we omit the

index i whenever the belief is the same for each agent). Furthermore, we write

pt(s) and qit(s) for the respective posterior probabilities conditional on a single

signal s ∈ {g, b}, and, analogously, pt(s, s
′) for the posterior probability about

the state, conditional on a pair of signals (s, s′) ∈ {g, b}2. Note that, since

signals are i.i.d. and symmetric, we have pt = pt(g, b) = pt(b, g).

3 Equilibrium analysis

3.1 Public information

We first consider the case in which both signals are publicly observable. This

scenario will serve as a benchmark for the case with privately observed signals,

and it allows us to establish connections to existing models of strategic exper-

imentation without private information. When signals are publicly observed,

the agents share a common belief about the state after observing the realiza-

tion of signals. We denote their common belief by p̌0 := p0(s1, s2). Consider

an investment history at some time t at which k ≥ 1 agents are currently in-
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vested. Since investments and the arrival of accidents are publicly observable,

both agents update their belief about the realization of the state of the world

based on the observed actions and payoffs. In the absence of any accidents

following an investment, the posterior belief p̌t continuously evolves following

the familiar differential equation

dp̌t
dt

= kγ p̌t(1− p̌t).

Throughout, we assume that the investment I that is required to initiate a

project is large enough to ensure that agents remain invested after they initi-

ated their project (unless an accident occurs), even if the other agent deviates

from his equilibrium strategy. We begin by constructing a symmetric equilib-

rium with this property, showing that for sufficiently large I, this equilibrium

is indeed unique in the class of symmetric equilibria.

We can derive a symmetric equilibrium without exits by backwards induc-

tion. At an investment history at which both agents are already invested, both

remain invested indefinitely. At a history at which only one agent invested,

the leader remains invested indefinitely, and the follower decides how long to

wait before making the investment. Before the first investment, each agent

must decide how long to wait, conditionally on the other agent not having

invested first. To construct our equilibrium, we thus need to derive the fol-

lower’s optimal investment delay. We then proceed to find a distribution over

initial investment times that are mutually optimal given the continuation play,

verifying that it is indeed never optimal for either agent to exit prior to an

accident.

We begin by considering a history at which one agent is invested (k = 1).

The follower benefits from the leader’s experimentation in this case, because of

the possibility that the leader experiences an accident. If the leader experiences

an accident, the follower learns that the state of the world is bad without

incurring any losses. Depending on the follower’s posterior belief about the

state, it may thus be profitable for him to delay the investment. Assuming

that the follower delays his own investment by some duration τ (at which he
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is sufficiently confident that the state is good), the expected net present value

before paying investment costs I for the leader at any belief p is given by

vl(p, τ) = py + (1− p)
(
(1− e−(r+γ)τ )λ1 + e−(r+γ)τλ2

)
(y − γc)− rI. (2)

where by λk = r/(r + kγ) we denote the marginal value of a discounted unit

payoff stream up to termination at a random time arriving at constant rate

kγ for k = 1, 2. By the same token, assuming that the leader remains in-

vested indefinitely, the expected present value of the follower when delaying

the investment by a duration τ is given by

vf (p, τ) = e−rτpy + e−(r+γ)τ (1− p)λ2(y − cγ)− (p+ (1− p)e−γτ )e−rτrI. (3)

Define the log-likelihood ratio φ(p) := ln(p)− ln(1− p). The following lemma

reports basic properties of the functions vl and vf .

Lemma 1. The function vl(p, τ) is linearly increasing in p, convex and de-

creasing in τ for every p ∈ (0, 1) and supermodular in (p, τ). The function

vf (p, τ) is linearly increasing in p and has a single peak in τ at

τ ∗(p) =


(
φ(p∗f )− φ(p)

)
/γ if p < p∗f

0 if p ≥ p∗f

(4)

for every p ∈ (0, 1), where

p∗f =
λ1(rI + γI) + λ2(γc− y)

λ1(y + γI) + λ2(γc− y)
. (5)

All proofs are found in the Appendix. We write v∗f (p) = vf (p, τ
∗(p)) and

v∗l (p) = vl(p, τ
∗(p)) for the values of the leader and the follower, respectively,

given the follower uses the optimal delay. Since τ ∗ is weakly decreasing in

p, and vl and vf are strictly increasing in p as well as decreasing in τ , it

follows that v∗l and v∗f are strictly increasing functions in p. Moreover, v∗l is

continuous, positive if p = 1, and negative if p = 0. Hence, it has a unique

root on (0, 1), which we denote by p∗l . Note that, by definition of p∗f and p∗l ,
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we have v∗f (p
∗
f ) = v∗l (p

∗
f ) > 0 and thus p∗l < p∗f .

Consider now a history of the game, in which neither agent has invested,

so that k = 0. In this case, each agent anticipates in this conjectured equilib-

rium that, once they invest, the follower will delay their investment by τ(p̌0).

If p̌0 < p∗l , then neither agent is willing to invest and become the leader in

any equilibrium in which players invest at most once, by definition of p∗l . If

p∗l < p̌0 < p∗f , then the value of becoming the leader is positive. Note, however,

that there can be no symmetric equilibrium in pure strategies in which play-

ers invest at most once, as the best response to the other agent’s investment

would be not to invest and vice-versa. The same argument rules out atoms in

mixed-strategy equilibrium. Thus, if there is a symmetric equilibrium, it must

be in atomless mixed strategies, with each agent investing at a rate that ren-

ders the other agent indifferent between investing immediately and delaying

his investment by any length of time. As long as neither agent has made the

investment, no new information becomes available, so that the agents’ equi-

librium flow rate of investment β is constant over time. We can immediately

calculate the equilibrium investment rate, using the fact that each agent must

be indifferent between making the investment immediately and delaying in-

vestment by another instant. This implies that each agent must invest at a

rate β that solves

v∗l (p̌0) = βv∗f (p̌0)dt+ (1− rdt− βdt)v∗l (p̌0).

Solving the equation for β gives the investment rate as a function of the com-

mon belief p̌0:

β∗(p̌0) = max

{
rv∗l (p̌0)

v∗f (p̌0)− v∗l (p̌0)
, 0

}
. (6)

It follows from p̌0 < p∗f and Lemma 1 that the denominator of β∗ is always

strictly positive, and, therefore, the rate of investment is positive whenever

the value of becoming the leader is greater than zero. Moreover, the difference

between the follower’s and the leader’s value converges to 0 as p̌0 approaches
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the threshold p∗f , so that the investment rate β∗(·) approaches infinity as p̌0 →
p∗f . Note also that the payoff for each agent in this case is, by construction,

equal to v∗l (p̌0).

To verify that this is indeed an equilibrium, we need to check that no agent

wants to exit once he has invested. Both agents are invested whenever p̌0 ≥ p∗f ;

by definition of p∗f , no agent can gain from exiting. When p̌0 < p∗f and only one

agent has invested, then the leader would receive at most v∗f (p̌t) after exiting,

while he obtains v∗l (p̌t) + rI if he remains indefinitely if no accident occurs.

If I is close to y/r, however, then v∗f (p̌t) is close to zero. On the other hand,

v∗l (p̌t) + rI is close to y, since v∗l (p̌t) ≥ 0, for otherwise an agent would not

want to become leader in the first place. Thus, for I close to y/r, we have

v∗l (p̌t) + rI > v∗f (p̌t), which implies that the leader cannot gain from exiting.

The above equilibrium turns out to be unique provided the investment I

required to initiate the project is sufficiently large. A large investment deters

agents from making frequent switches, and thus makes it costly for the agents

to respond to deviations by their opponent. When I is small, it is possible to

construct an equilibrium in which both agents invest immediately, and every

deviation is punished with immediate exit by the competitor. For large values

of I, exiting in response to a deviation by the opponent is not a credible threat

and thus cannot be part of any equilibrium.

A necessary condition for simultaneous investment to be part of an equi-

librium is that the payoff for each agent be non-negative. An agent’s payoff

from jointly investing immediately, given a posterior belief p̌t, is given by

vl(p̌t, 0) = p̌ty + (1− p̌t)λ2(y − γc)− rI. (7)

This payoff is non-negative if and only if p̌t ≥ p, where

p =
rI + λ2(γc− y)

y + λ2(γc− y)
. (8)

Clearly, there can be no initial investment in equilibrium when the prior belief

p̌0 lies below p, since then the payoff from investing is necessarily negative for
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each agent.

Now, define p̂∗l to be the lowest posterior belief at which the payoff of

already being invested as the leader is non-negative, i.e. v∗l (p̂
∗
l ) + rI = 0. The

following result shows that, for I sufficiently large, the thresholds p̂∗l , p, p
∗
f and

p∗l defined above satisfy the following chain of inequalities.

Lemma 2. There is an I0 ∈ (0, y/r) such that, for I ≥ I0, we have

p̂∗l < p < p∗l < p∗f < 1.

The lemma implies in particular that, for I sufficiently large, joint invest-

ment can never arise in equilibrium at any posterior belief below the threshold

p∗f , because each agent correctly anticipates that the opponent would never

again exit following the investment (except after a failure). If agent 1, for

example, was to invest at some posterior p̌t < p∗f , then agent 2 would prefer to

wait and become the follower, knowing that agent 1 would not want to exit.

The following theorem summarizes these findings, and characterizes the

unique symmetric equilibrium for symmetrically informed agents.

Theorem 1 (Symmetric equilibrium with public information). There exists

I∗ ∈ (0, y/r) such that, for all I > I∗, there is a symmetric equilibrium, in

which neither agent exits before the arrival of an accident. If p̌0 ≥ p∗f , both

agents invest immediately. If p∗l < p̌0 < p∗f , each agent invests at constant rate

β∗(p̌0) given by Equation (6) in the first phase, while the follower starts the

project with delay τ ∗(p̌0). If p̌0 ≤ p∗l , neither agent invests. This equilibrium

is unique in the class of symmetric equilibria.

The equilibrium structure mirrors that of the symmetric equilibrium in

Keller and Rady (2015), in the sense that there are two belief thresholds with

the property that there is no experimentation below the first, and maximum

experimentation above the second threshold, with randomization for all beliefs

that lie between these thresholds. For intermediate prior beliefs, the first phase

of the game is strategically similar to standard “war-of-attrition” games (see,

e.g., Bulow and Klemperer, 1999).
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Note that we focus our analysis on the case in which the investment cost

I is large. This assumption is motivated by both practical relevance as well

as technical considerations. The strategic experimentation literature tends to

limit attention to stationary Markov perfect equilibria, in which the agents’

strategies are time-invariant functions of their posterior belief about the state

of the world. Aside from making the analysis more tractable, the purpose

of focussing on Markov perfect equilibria is to isolate effects that result from

information spill-overs.2 In our model, however, the players’ strategies in any

Markov perfect equilibrium must condition on the opponent’s current binary

mode of experimentation, that is, whether or not the other player is currently

invested. But this means that players can punish deviations directly, so that,

by focussing on Markov perfect equilibrium, one no longer effectively isolates

effects from information spill-overs. For example, if there are no investment

costs, there exist Markov perfect equilibria in which both players invest imme-

diately and are deterred from exiting by the threat of immediate exit by the

opponent. Such punishment becomes non-credible when players must make

large investments to initiate experimentation. Once a player begins experi-

mentation by investing, the investment cost is sunk, and he subsequently no

longer finds it worthwhile to stop and re-pay this cost in order to punish his

opponent for deviating.

3.2 Private information

We now turn to equilibria in the case of private signals. The equilibria dif-

fer from the case of publicly observed signals in that the presence of private

information exacerbates uncertainty and introduces signaling incentives. Un-

certainty is enhanced because the agents are both less informed about the state

of the world. Signaling incentives arise due to learning spill-overs and social

learning: since each agent benefits from the other’s experimentation, each has

an incentive to behave in a way that makes the other agent more optimistic

in order to encourage him to engage in more experimentation.

2An exception is Hörner et al. (2018), who analyze non-Markovian equilibria in this
context.

15



In the equilibria we characterize, the way private information is revealed

depends crucially on whether the most optimistic interim belief p0(g, g) exceeds

the follower threshold p∗f or not. If p0(g, g) ≥ p∗f , optimistic agents invest

without delay, so that all private information that is revealed in equilibrium

is revealed in a lump at time zero. Otherwise, optimistic agents delay their

initial investment while pessimistic agents wait, so that private information is

aggregated continuously over time.

The following result characterizes three different classes of equilibria and

conditions for their existence that depend on the prior belief p0 ∈ (0, 1) and

the signal precision ρ ∈ (1/2, 1). Note that, depending on the parameters, the

rate β∗(p0(b, b)) may be 0.

Theorem 2 (Symmetric equilibrium with private information). There is a

I∗∗ ∈ (0, y/r) such that, for all I > I∗∗, there exists an equilibrium in which

no agent exits prior to an accident, followers delay by τ ∗ and the following

holds.

(1.) Suppose p0 ≥ p∗l and ρ ∈ (1/2, 1) are such that p0(g, g) ≥ p∗f . Then there

exists a symmetric equilibrium in which type g invests immediately. Type

b of each agent invests immediately with some probability η∗ ∈ [0, 1], and

with probability 1 − η∗, he invests at a random time arriving at constant

rate β∗(p0(b, b)).

(2.) Suppose p0 < p∗l and ρ ∈ (1/2, 1) are such that p0(g, g) ≥ p∗f . Then there

exists a symmetric equilibrium in which type g invests immediately with

some probability ν∗ ∈ [0, 1], and with probability 1 − ν∗ does not invest.

Type b never invests.

(3.) Suppose p0 > 0 and ρ ∈ (1/2, 1) are such that p0(g, g) < p∗f . Then there

exists a symmetric equilibrium in which type g of each agent invests at rate

µ∗t ≥ 0 given by (21). Type b delays investment until (possibly infinite)

t∗ > 0, given by (22), and invests at constant rate β∗(p0(b, b)) thereafter.

We refer to the first two types of equilibria as equilibria with “immediate

investment,” and to the latter as an equilibrium with “delayed investment.”
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Whether the equilibrium exhibits delayed investment depends the relative lo-

cation of p0(g, g) vs. p∗f .

Equilibria with immediate investment arise either when signals are very

informative or if the prior belief is very high. Such equilibria may be pooling,

partially separating, or fully separating. A high prior belief and weak signals

result in pooling, where each agent invests immediately. Indeed, if the interim

belief of pessimistic agents, conditional on their own signal, is high enough,

then it is always optimal for them to invest immediately. On the other hand,

when signals are highly informative, the equilibrium tends to be partially or

fully separating. Intuitively, an informative good signal provides a strong

incentive for an agent to invest, while an informative bad signal makes investing

costly. However, immediate investment communicates good news that makes

one’s opponent more willing to invest, which, in turn, generates a positive

informational externality. As a result, pessimistic agents have incentives to

pretend to be optimistic, in order to encourage the other agent to experiment.

Equilibria exhibit delayed investment when the prior is not too high and

signals not too informative. In an equilibrium with delayed investment, op-

timistic agents engage in an attrition game, while pessimistic agents simply

wait; indeed, as in the case of public information, optimistic agents delay in-

vestment because they benefit from the possibility that their opponent invests

first and then subsequently provides free information. In contrast to the case

of public information, however, in equilibrium, an optimistic agent invests at a

rate that keeps his opponent’s optimistic type indifferent, irrespectively of his

opponent’s true type, while, with public information, agents keep each other’s

true types indifferent. Moreover, because only optimistic agents invest with

positive probability, the agents learn about one another’s types while they wait.

As long as neither agent invests, each agent becomes gradually more certain

that the other one has observed a bad signal. This gradual change in beliefs

about the other’s type, in turn, affects the agents’ incentives to invest. The

interaction between belief updating, incentives and actions creates a learning

feedback loop that either accelerates or dampens the speed of learning.

The effects of the feedback loop can be seen in the dynamics of invest-
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Figure 1: Three branches of equilibrium investment rates.

ment rates illustrated in Figure 1. Here E[Vθ(si, s−i)] denotes the equilibrium

payoff from being a leader in state θ for an agent with signal si, when his

opponent’s signal is s−i. The upper branch in the figure corresponds to the

case in which the expected equilibrium payoff E[Vθ(g, b)] > 0 from being an

optimistic leader, conditional on the opponent’s signal being bad, is positive.

In this case, an agent of type g wants to invest regardless of his opponent’s

type. In equilibrium, each optimistic agent invests at a rate that makes his

optimistic opponent just indifferent between investing and waiting. The longer

an optimistic agent waits for the other to invest first, the more convinced he

becomes that the other’s delay is due to his signal being bad. In equilibrium,

therefore, optimistic agents must increase their rates of investment in order to

continue to make the good type of the other agent indifferent between waiting

and investing. This increase, in turn, accelerates the decline in beliefs, which

requires a further increase in the investment rate of optimistic agents. The

result is an escalating feedback-loop between investment and learning rates,

which causes investment rates to shoot off to infinity, so that all private infor-

mation is revealed by some finite time t∗.

The lower branch in Figure 1 corresponds to the case in which type g’s
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worst-case continuation payoff E[Vθ(g, b)] from an immediate investment is

negative. As before, the longer an optimistic agent waits for the other to

invest first, the more convinced he becomes that the other’s deferral is due

to his signal being bad. In this case, the expected value of becoming the

leader diminishes over time. In order for optimistic agents to continue to

be indifferent between waiting and investing, they must decrease their rate

of investment gradually. This reduction again triggers a feed-back loop, in

which decreasing investment rates slow down learning, which in turn dampens

investments and so on. Investment rates eventually tend to 0 and the agents’

private information is never fully revealed.

If E[Vθ(g, b)] = 0, finally, a type-g agent would be indifferent between

investing and staying out if he knew his partner to be of type b. In this case,

agents of type g invest at a constant rate in equilibrium, so that agents’ beliefs

that their partner is of type g decline over time, yet all private information is

only revealed in the limit as t→∞.

4 Welfare and transparency

In this section, we consider welfare properties of the equilibria derived in the

previous sections. Our notion of efficiency corresponds to a setting in which

agents pool their private information and commit to a strategy at the outset of

the game, seeking to maximize the sum of their payoffs. The following result

characterizes this cooperative solution.

Theorem 3 (Cooperative benchmark). There exist thresholds p∗1 < p∗l and

p∗2 ∈ (p∗1, p
∗
f ), so that it is socially optimal for both agents to invest immediately

if p̌0 ≥ p∗2 and never to invest if p̌0 < p∗1. If p∗1 ≤ p̌0 < p∗2, then it is socially

optimal for one agent to invest immediately, and for the second agent to invest

with delay τ s(p̌0) = (φ(p∗2)− φ(p̌0))/γ.

It is noteworthy here that, due to switching costs, staggered investment

is optimal for intermediate values of the interim beliefs. Since the initial in-

vestment costs required to start a project cannot be recovered after a failure,
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it is socially preferable to start only one project initially, which then gener-

ates a flow of information on which the start of the second project can be

conditioned. In this way, staggered investment lowers the loss from making

irreversible investments in the bad state. The cooperative solution shares the

feature of staggered investment with the equilibrium under public information.

However, in equilibrium, there is a period of inefficient delay prior to the ini-

tial investment. Moreover, the equilibrium exhibits too little experimentation

relative to the efficient benchmark. On the one hand, since p∗1 < p∗l , there

are values of the interim belief at which experimentation is socially valuable

but does not arise in equilibrium. Second, since p∗2 < p∗f , delay of the sec-

ond investment is inefficiently long. Inefficiencies arise in equilibrium due to

free-riding incentives: agents benefit from the information generated by their

competitor’s experimentation, and they fail fully to internalize the social value

of their own experimentation. The incentive to free-ride thus leads to ineffi-

ciently long delays in investment by the follower, and results in sluggish initial

investment, as each agent prefers the other to invest first.

In comparing the equilibrium outcomes with and without information asym-

metries, it is natural to ask which environment is more desirable from an ef-

ficiency standpoint. Näıve logic may suggest that more transparency should

unambiguously lead to better outcomes, as it allows the agents to make better-

informed decisions. This view, however, disregards the aforementioned positive

side-effects of private information. The following result formalizes this insight.

It shows that private information is socially preferable if investment costs are

substantial, the prior belief that the state is good is high enough, and the

signals are not too informative. Indeed, denote by W0(s1, s2) the expected

social surplus generated in the unique symmetric equilibrium under public in-

formation, when p0(s1, s2) is the common initial belief that the state is good.

Let W̃ denote the ex-ante expected social surplus generated in a symmetric

equilibrium in which each agent’s signal is private information. We then have

the following

Theorem 4 (Welfare improvement through private information). Fix p0 >

p∗l . There exists ρ∗ > 1/2 and Ī ∈ (0, y
r
) such that, for all signal precisions
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ρ ∈ (1/2, ρ∗) and investment costs I ∈ (Ī , y
r
), we have W̃ ≥ E[W0(s1, s2)]. For

p∗l < p0 < p∗f , the inequality is strict.

The condition on the signal precision ensures that it is socially optimal for

both agents to invest (though it may not necessarily be socially optimal for

both to invest right away). If p0 ≥ p∗f , there always exists a range of signal

precisions guaranteeing that both types of agents invest immediately under

private information, as in the efficient benchmark. If p∗l < p0 < p∗f , then

there are signal precisions such that the symmetric equilibrium under public

information has delayed entry. In this case, a mixed-strategy equilibrium arises

both under public and under private information. In this equilibrium players

invest at a rate that keeps the actual type of their opponent indifferent, if

information is public. If information is private, by contrast, type g of player i

invests at a rate that would keep type g of player −i indifferent, even if player

−i happens to be of type b. The proof establishes that the welfare benefit of

this increased investment rate of the g-types will overwhelm the welfare loss

both from the reduced investment rate of b-types and from players’ less precise

knowledge of the underlying state.

It is well known that, in the presence of payoff externalities, more infor-

mation can lead to socially inferior equilibrium outcomes, as uncertainty will

typically relax incentive-compatibility constraints. By focussing on the case of

high I, however, we are able to isolate the effects of informational spill-overs;

thus, here, the welfare gain from private information ensues from a mechanism

that is purely informational in nature.

5 Conclusion

We propose a tractable model of strategic experimentation with private in-

formation and bad-news learning in the presence of non-negligible switching

costs. We derive the unique symmetric equilibrium in the case of symmetric

information. We also construct equilibria for the case of privately observed

signals, which exhibit either immediate or randomly delayed investment. We

trace these properties back to an encouragement-through-signaling effect and

21



to strategic uncertainty resulting from asymmetric information. Finally, we

show that, due to these effects, equilibrium surplus can be higher with private

information.

There are a number of natural extensions we do not address in this pa-

per. For example, we do not allow communication between agents. However,

we conjecture that communication would not change the equilibrium in our

model, since agents would always send the most positive signal to induce more

experimentation by their partner, so that, in equilibrium, all communication

would amount to babbling. We also do not address any questions regarding

games with more than two agents. For public information, we conjecture that

an equilibrium with many agents would be characterized by an increasing se-

quence of belief thresholds, where each indicates the belief at which the next

investment takes place with certainty. Equilibria with private information will

also be affected by encouragement and strategic uncertainty in this case, and

we expect that many of the aspects described in this paper will carry over to a

game with more than two players. However, the welfare implications are am-

biguous, because the information aggregation problem becomes more severe,

while the social value of experimentation increases.

6 Proofs

Proof of Lemma 1. (i) That vl is linear in p is obvious from its definition

in Equation (2) and vl is increasing in p because it follows from γc > y > 0

that the second term in Equation (2) is negative. To see that vl is decreasing

in τ , note that λ2 < λ1, and hence

d

dτ
vl(p, τ) = −(r + γ)(1− p)(λ1 − λ2)e−(r+γ)τ (γc− y) < 0

for all p ∈ (0, 1) and τ ≥ 0. That vl is convex in τ for all p ∈ (0, 1) follows

from
d2

d2τ
vl(p, τ) = (r + γ)2(1− p)(λ1 − λ2)e−(r+γ)τ (γc− y) > 0.
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Finally, supermodularity holds because

d2

dpdτ
vl(p, τ) = (r + γ)(λ1 − λ2)e−(r+γ)τ (γc− y) > 0.

(ii) Linearity of vf in p is obvious from its definition in (3) and it is in-

creasing in p because γc > y > 0 implies that the first term in Equation (3)

is positive and the second term is negative. For fixed p ∈ (0, 1), the derivative

of vf with respect to τ is

d

dτ
vf (p, τ) = −e−rτ

[
rpy − (r + γ)e−γτ (1− p)λ2(cγ − y)

]
+e−rτrI[rp+(r+γ)(1−p)e−γτ ].

Let τ̂(p) be the (finite) solution to the first order condition dvf (p, τ)/dτ = 0.

The second term in brackets is positive, so that dvf (p, τ)/dτ > 0 if τ < τ̂(p)

and dvf (p, τ)/dτ < 0 if τ > τ̂(p). Hence, vf attains a global maximum at τ̂(p).

If τ̂(p) ≥ 0, then solving

rp(y − rI) + (r + γ)e−γτ̂
∗(p0)(1− p)(λ2(y − cγ)− rI) = 0

for τ̂(p) shows that τ̂(p) = τ ∗(p). If τ̂(p) < 0, then vf (p, ·) is strictly decreasing

on [0,∞), and therefore assumes its maximum at 0.

Proof of Lemma 2. Note that for all p < p∗f we have v∗l (p) < vl(p, 0) =

vf (p, 0) < v∗f (p) with equality everywhere when p = p∗f . By definition, we have

vl(p, 0) = 0, v∗l (p
∗
l ) = 0. Since vl, vf , v

∗
l , and v∗f are all continuously increasing

functions, the first inequality v∗l (p) < vl(p, 0) implies that p < p∗l . By definition

of p∗f , we have v∗f (p
∗
f ) > 0, and thus the identity v∗l (p

∗
f ) = v∗f (p

∗
f ) implies that

p∗l < p∗f . Finally, when I → y/r then p → 1, while p̂∗l < 1 is bounded away

from 1. Hence, there is an I0 < y/r, such that p̂∗l < p.

Lemma 3. In every equilibrium with public signals, each agent invests imme-

diately at any belief p̌0 ≥ p∗f .

Proof. It is clear that for p̌0 = 1, it is a unique best-response for each agent to

invest immediately. Because of switching costs, there also exists a threshold
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p†0 ∈ (p∗f , 1) close to one, such that an agent who is invested at a belief will not

exit at any p̌0 ≥ p†0. At a history with posterior belief p̌0 ≥ p†0 at which exactly

one agent is invested, the agent who is out will thus invest immediately. At

a history with posterior belief p̌0 ≥ p†0 at which both agents are out, they

anticipate that the other agent will invest immediately following their own

investment, and thus each strictly prefers to invest immediately. Thus, in

any equilibrium, both agents are invested at any belief p̌0 ≥ p†0. Because of

switching costs, there exists an ε ∈ (0, p†0 − p∗f ) such that any history with

posterior belief p̌0 ≥ p†1 := p†0 − ε at which exactly one agent is invested,

this agent would not exit. Again, by definition of p∗f , the agent who is out

would thus invest immediately. Again, if both agents are out, they would then

invest immediately. Thus, both agents would invest immediately at any belief

p̌0 ≥ p†1. The same argument applies for any threshold above p∗f so that, in

any equilibrium, both agents invest immediately at any p̌0 ≥ p∗f .

Proof of Theorem 1. (1.) Existence: (i) Let p̌0 ≥ p∗f . The claim immedi-

ately follows from the definition of p∗f .

(ii) Let p∗l ≤ p̌0 < p∗f . If an agent who is invested exits, he receives the

payoff v∗l (p̌t) by construction. By the same argument as in Part (2.) below,

it is never optimal for a leader to exit when p̌0 > p∗l . Before either agent has

invested, we have

v∗f (p̌0) > v∗l (p̌0) > 0,

which implies that each agent strictly prefers being the follower over being

the leader, and each prefers being the leader over an outcome in which nei-

ther agent ever invests. By symmetry, each agent has to choose the same

distribution over switching times. By standard arguments, the equilibrium

distribution cannot have any atoms or gaps in its support. Thus, the invest-

ment rate β∗(p̌0) from Equation (6) characterizes the distribution that makes

each agent indifferent between investing and not investing, which establishes

the claim.

(iii) For p̌0 ≤ p∗l , the claim follows immediately from the definition of p∗l .

(2.) Uniqueness : Consider a history with posterior belief p̌t ∈ [p̂∗l , p
∗
f ), at which

24



exactly one agent, say agent 1, is invested. By Lemma 3, in any equilibrium,

agent 2 invests immediately at any s ≥ t at which p̌s ≥ p∗f . Thus, if agent

1 stays invested indefinitely, (or until an accident occurs,) the largest delay

compatible with equilibrium is τ ∗(p̌t). The payoff for agent 1 is therefore no

less than v∗l (p̌s) + rI at each s ≥ t. Let (Ik)k∈N0 be an increasing sequence

in [0, y/r] with I0 = 0 and Ik → y/r for k → ∞, and let (p̌k0) be a sequence

of prior beliefs in (p∗kl , p
∗k
f ), where p∗kl and p∗kf are the leader and follower

thresholds for investment cost Ik for each k. Further, let pk be given by (8)

with I = Ik. Since pk → 1 for k →∞, we have p∗kl → 1 for k →∞. Thus, the

payoff for the leader is at least v∗l (p̌
k
0) + rIk → y. On the other hand, the best

thing that can happen for agent 1 after exiting is that the other agent invests

and never exits. Thus, the highest payoff agent 1 can achieve after an exit is

v∗f (p̌
k
0) which converges to zero as Ik → y/r. Together it follows that

lim
k→∞

v∗l (p̌
k
0) + rIk − v∗f (p̌k0) = y (9)

which implies that there exists a k†, such that for all k > k†, we have

v∗l (p̌
k
0) + rIk > v∗f (p̌

k
0).

This inequality implies that a leader cannot gain by exiting at beliefs in the

range [p̂∗l , p
∗
f ) if I > I†, for some I† > 0. From (9), it follows that I† < y/r.

Given that the leader does not exit, there cannot be any p̌t ∈ [p̂∗l , p
∗
f ) at

which both agents invest immediately since either agent would prefer delaying

the investment and become a follower. Since there is no equilibrium with

simultaneous investment, in symmetric equilibrium, both agents must choose

the same distribution over initial investment times. Because the continuation

strategies are unique, there is a unique investment rate, given by (21), that

has the property that each agent is willing to randomize. Thus, there is a

unique symmetric equilibrium outcome. By Lemma 2, we have p̂∗l < p, for I

sufficiently large. In this case, agents’ expected payoffs from investing are thus

negative for p̌0 ≤ p̂∗l . Therefore, in every equilibrium, both agents refrain from

investing/ rescind their respective investment for good in this range.
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Proof of Theorem 2. Part (1.): Suppose p0 > 0 and ρ > 1/2 such that

p0(g, g) ≥ p∗f . We proceed to verify that the following strategies and beliefs

are part of an equilibrium. In the first phase, an agent with signal g invests

immediately. An agent with signal b invests immediately with probability

η ∈ [0, 1]. With probability 1− η, he invests at a random time drawn from an

exponential distribution with parameter β∗(p0(b, b)). In the second phase of

the game, a follower with posterior belief p delays investment by τ ∗(p), and the

beliefs at t are updated via Bayes’ rule whenever possible. A leader with signal

g reverses his investment immediately at t = 0 (and stays out) if and only if

his posterior belief about θ is lower than p̂∗l . Otherwise he stays invested

indefinitely. A leader with signal b reverses his investment immediately at

t = 0 with some probability 1− ν ∈ [0, 1]. Either agent who remains invested

in the second (or third) phase exits after the occurrence of a failure. Unless

otherwise stated, beliefs after off-path histories are specified as follows: In

any phase, at time t, the non-deviating agent with signal s assigns probability

pt(b, s) to state θ = H. By the same token, after any off-path exit of agent i,

agent −i assigns probability 1 to agent i’s signal being b. Any off-equilibrium

investment of agent i does not affect agent −i belief about agent i’s signal.

The deviating agent’s beliefs do not change as a result of his deviation.

We show that there exist η, ν ∈ (0, 1) such that the above strategies and

associated beliefs characterize a perfect Bayesian equilibrium. Consider first

the second phase, taking as given that each type g invests at t = 0 with

probability 1, and each type b invests at t = 0 with probability η and waits

with probability 1−η. As shown in Lemma 1, the function τ ∗(p) is the optimal

delay of the follower with posterior p, and thus given the leader stays in the

game, a follower cannot gain from deviating in the second phase of the game. If

the leader exits immediately in the second phase, the follower cannot influence

that decision.

Suppose agent i with signal s invests at time t = 0 in the first phase, and

the other agent −i does not, so that at t = 0 in the second phase, agent i is

the leader and −i the follower. If both expect that the other agent follows

the strategy described in the previous paragraph, then the posterior belief of
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agent i with signal s is p0(b, s), and the posterior belief of type s of agent −i
is, by Bayes’ rule,

p̃(η, s) =
p0(s)(ρ+ η(1− ρ))

p0(s)(ρ+ η(1− ρ)) + (1− p0(s))(1− (1− η)ρ)
. (10)

If vl(p0(b, b), τ ∗(p̃(η, b))) + rI > v∗l (p0(b, b)) + rI > 0, then the continua-

tion payoffs for either type of agent i is positive (since vl(p0, τ
∗(p̃(ην, b))) >

vl(p0(b, b), τ ∗(p̃(ην, b))), and both types of agent i remain invested for sure. If,

on the other hand, vl(p0(b, b), τ ∗(p̃(η, b))) + rI < 0 < vl(p0(b, b), τ ∗(p0)) + rI,

then type b of agent i remains in the game with probability ν∗ ∈ (0, 1) solving

vl(p0(b, b), τ ∗(p̃(ην∗, b))) + rI = 0.3 If vl(p0(b, b), τ ∗(p0)) + rI < 0, then type b

of agent i exits for sure, and type g remains for sure.

We need to show that there exists a value for η such that neither agent can

gain by deviating from the specified strategies in the first phase. Denote by

Vθ(η) the value of investing at t = 0 for an agent in state θ, and let Wθ(η, τ)

be the value of waiting at t = 0 when the agent delays investment by τ as

follower.Note that here τ refers to the delay of the investment, given that the

other agent invests immediately at t = 0. When neither agent invests, then

each agent is convinced that the other agent’s type is bad, so that there is no

longer any uncertainty about the other’s private information, and the unique

symmetric equilibrium under public information with p̌0 = p0(b, b) is played

after that history. Note here that when the state and strategies are given, the

payoff is independent of private signals. Note also that for a follower in the

second phase, the optimal delay for type b is τ ∗(p̃(η, b)) when type b of the

other agent invests with probability η. We write

E[W ∗
θ (η)|s] := max

τ
E[Wθ(η, τ)|s] = E[Wθ(η, τ

∗(p̃(η, s))|s].

for the payoff from waiting when using the optimal delay.

There is a pooling equilibrium, i.e. η = 1, if and only if p0(b) ≥ p∗f , since,

3Note that p̃(ην∗, b) is the posterior belief of type b of agent −i that the state is H,
conditional on the joint event that agent i invested in the first phase and remains in the
second phase, where ην∗ is the probability that type b of agent i does this.
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in this case, each type of each agent is willing to invest immediately, if the

other agent invests for sure, and thus reveals no information. Thus, consider

the case p0(b) < p∗f . Note that in this case, we have E[W ∗
θ (1)|b] ≥ E[Vθ(1)|b],

since bad types always have incentives to wait when the other agent invests

with probability one. There are two cases to consider, E[W ∗
θ (0)|b] < E[Vθ(0)|b]

and E[W ∗
θ (0)|b] ≥ E[Vθ(0)|b].

(i.) Suppose E[W ∗
θ (0)|b] < E[Vθ(0)|b], i.e., an agent with a bad signal prefers

to invest immediately in the first phase at time zero, if the other agent

invests with zero probability after a bad signal and invests immediately

after a good signal. In this case, there exists a partial (or full) pool-

ing equilibrium in which type g always invests while type b invests with

probability η∗ ∈ (0, 1]. Note that the functions E[W ∗
θ (η)|b] and E[Vθ(η)|b]

are convex combinations of continuous functions and hence continuous.

Thus, there exists an η∗ ∈ (0, 1] such that E[Vθ(η
∗)−W ∗

θ (η∗)|b] = 0, so

that an agent with type b is indifferent between investing and not in-

vesting, given the other agent invests with probability η∗ after observing

signal b. We shall now verify an agent of type g’s incentives to invest.

Note that we have the following inequality:

0 = E[Vθ(η
∗)−W ∗

θ (η∗)|b] ≤ E[Vθ(η
∗)−Wθ(η

∗, τ ∗(p̃(η∗, g)))|b]

= p0(b)
(
VH(η∗)−WH(η∗, τ ∗(p̃(η∗, g))

)
+ (1− p0(b))

(
VL(η∗)−WL(η∗, τ ∗(p̃(η∗, g)))

)
≤ p0(g)

(
VH(η∗)−WH(η∗, τ ∗(p̃(η∗, g))

)
+ (1− p0(g))

(
VL(η∗)−WL(η∗, τ ∗(p̃(η∗, g)))

)
= E[Vθ(η

∗)−W ∗
θ (η∗)|g],

where the first inequality follows from the fact that E[W ∗
θ (η∗)|b] ≥

E[Wθ(η
∗, τ)|b] for all τ ≥ 0 by definition, and the second inequality from

p0(g) > p0(b), and from the fact that investing immediately is strictly

better than waiting if and only if the state is H (since there is no gain

from delay in state H, and no gain from investing in state L).

(ii.) Now, suppose E[W ∗
θ (0)|b] ≥ E[Vθ(0)|b], so that agents with signal b prefer

to wait if the other agent invests only if his signal is g. For agents with
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signal g in this case we have

E[Vθ(0)−Wθ(0)|g] = q0(g)
(
vl(p0(g, g), 0)− v∗f (p0(g, g))

)
+ (1− q0(g))

(
0 ∨ v∗l (p0)− 0 ∨ vl(p0, τ

∗(p0(b, b))
)
.

Since p0(g, g) ≥ p∗f by assumption, we have vl(p0(g, g), 0)−v∗f (p0(g, g)) =

0, and thus E[Vθ(0)−Wθ(0)|g] ≥ 0. Thus, in this case, we have a fully

separating equilibrium in which g-types invest at t = 0, whereas b-types

do not.

It remains to be shown that, in both cases (i.) and (ii.), if agent i has incen-

tives to invest at time t = 0, then he has no incentive subsequently to exit,

provided I is large enough. Similarly to the proof of Theorem 1, let (Ik)k∈N0 be

an increasing sequence in [0, y/r] with I0 = 0 and Ik → y/r for k →∞, and let

(pk0, ρ
k) be a sequence of information structures with p∗kl < pk0 < p∗kf < pk0(g, g),

where p∗kl and p∗kf are, respectively, the leader and follower thresholds for in-

vestment costs Ik, such that either E[W ∗k
θ (0)|b] < E[V k

θ (η)|b] or E[W ∗k
θ (0)|b] ≥

E[V k
θ (η)|b] for all k ≥ 0, where W ∗k

θ (η), V k
θ (η) denote the follower and leader

value for each k (as above). Moreover, let p̃k(η, b) be the posterior belief given

by (10) at step k, and let ηk ∈ [0, 1] be the critical value with the property

that (1) for p0(b) < p∗kf , either type b of each agent is indifferent or else ηk = 0,

and (2) for p0(b) ≥ p∗kf , we have ηk = 1. Finally, let pk be given by (8) with

I = Ik. Note that, if si = b, our assumption that i has incentives to invest at

time t = 0 implies p̃k(ηk, b) ≥ pk for all k. If si = g, our assumption in the

statement of the theorem implies that i’s belief after any history is bounded

below by p0 ≥ p∗kl ≥ pk.

(i.) Both agents invested. Note that p̃k(ηk, b) → 1 as pk → 1, for k → ∞.

Thus, the payoff of remaining invested, for either type of agent, is at least

v∗l (p̃
k(ηk, b), 0) + rIk → y. On the other hand, the best thing that could

happen to an agent after exiting would be for the other agent to reveal

his type, to invest and never to exit. Thus, the highest payoff either type

of agent i could possibly achieve after an exit is E[v∗f (p
k
0(s−i, g)] which
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converges to zero as Ik → y/r. Together it follows that

lim
k→∞

v∗l (p̃
k(ηk, b), 0) + rIk − E[v∗f (p

k
0(s−i, g)] = y (11)

which implies that there exists a k̃1, such that for all k > k̃1, we have

v∗l (p̃
k(ηk, b), 0) + rIk > E[v∗f (p

k
0(s−i, g)].

This inequality implies that there exists a threshold Ĩ1 such that a leader

of either type cannot gain by exiting if I > Ĩ1. From (11), it follows that

Ĩ1 < y/r.

(ii.) Only one agent invested. First, we argue that type b of each agent i

remains invested if he invests himself and his payoff as leader is positive,

i.e., if pk0(b, b) > p̂∗kl . If pk0(b, b) ∈ [p̂∗kl , p
∗k
l ), then exit is clearly not

optimal, since after i’s exit, agent −i (whose type has become known

to be b after he did not invest) will never invest going forward. Thus

assume pk0(b, b) ≥ p∗kl . Then v∗l (p
k
0(b, b)) + rIk ≥ v∗l (p

∗k
l ) + rIk. Since

pk → 1 for k → ∞, it follows from pk0(b, b) ≥ pk that pk0(b, b) → 1 for

k → ∞, and therefore, v∗l (p
k
0(b, b)) + rIk → y. On the other hand,

the best thing that could happen for agent i after exiting is that the

other agent invests and never exits. Thus, the highest payoff agent i can

achieve after an exit is at most v∗f (p
k
t (b, b)) which converges to zero as

Ik → y/r. Together it follows that

lim
k→∞

v∗l (p
k
t (b, b)) + rIk − v∗f (p̃k(ηk, b)) = y (12)

which implies that there exists a k̃0, such that for all k > k̃0, we have

v∗l (p
k
0(b, b)) + rIk > v∗f (p̃

k(ηk, b)).

This inequality implies that there exists a threshold Ĩ0 such that a leader

cannot gain by exiting if I > Ĩ0. From (12), it follows that Ĩ0 < y/r.
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Part (2.): Consider symmetric strategies with the following properties. Each

agent with signal g invests with probability ν, and each agent with signal b

waits indefinitely in the first phase. If p0 ≥ p̂∗l , an agent who invested at t = 0

always remains invested until an accident occurs; if p0 < p̂∗l , an agent i who

invested at t = 0 in the first phase rescinds his investment at t = 0 in the third

phase if and only if −i did not invest in the second phase at t = 0. If agent i

invests immediately, then agent −i invests without delay if his signal is g. If

agent −i’s signal is b, then he delays his investment by τ ∗(p0). Agents never

invests after any other history. Each agent with signal g is indifferent between

investing and delaying his investment if

q0(g)vl(p0(g, g), 0)+(1−q0(g))(max{v∗l (p0)+rI, 0}−rI) = νq0(g)vf (p0(g, g), 0).

which is equivalent to

ν∗ = 1 +

(
1− q0(g)

q0(g)

)(
max{v∗l (p0) + rI, 0} − rI

vf (p0(g, g), 0)

)
(13)

When agent i with signal g invests, his continuation strategy is optimal by

construction. To show that it is optimal for agents with signal b to wait,

denote by Vθ(η) the value of investing at t = 0 for an agent in state θ, and let

Wθ(η, τ) be the value of waiting at t = 0 when the agent delays investment by

τ as follower. By construction of ν∗ and τ ∗, we have

0 = E[Vθ(ν
∗)−W ∗

θ (ν∗)|g]

= p0(g)
(
VH(ν∗)−WH(ν∗, τ ∗(p0(g, g)))

)
+ (1− p0(g))

(
VL(ν∗)−WL(ν∗, τ ∗(p0(g, g)))

)
≥ p0(b)

(
VH(ν∗)−WH(ν∗, τ ∗(p0(g, g)))

)
+ (1− p0(b))

(
VL(ν∗)−WL(ν∗, τ ∗(p0(g, g)))

)
= E[Vθ(ν

∗)−Wθ(ν
∗, τ ∗(p0(g, g)))|b]

≥ E[Vθ(ν
∗)−W ∗

θ (ν∗)|b].

Thus, for an agent with signal b, it is a best response to wait. A similar argu-

ment to before establishes that it is never optimal for an agent who invested

to exit.
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Part (3.): Suppose p0 > 0 and ρ ∈ (1/2, 1) are such that p0(g, g) < p∗f . The

strategies outlined in the theorem imply that an agent who invests in the first

phase and becomes the leader reveals himself to be of type g. Suppose that

after agent i invests at time t in the first phase, the agents use the following

continuation strategy:

• Agent −i with signal g invests at time t+ ∆, where ∆ = τ ∗(p0(g, g)).

• If v∗l (pt+∆) + rI ≥ 0, where

pt+∆ =
p0

p0 + (1− p0)e−γ∆
,

then type g of agent i remains in the game indefinitely, and each type s

of agent −i invests with delay τ ∗(p0(s, g))

• If v∗l (pt+∆)+rI < 0 < vl(pt+∆, 0), then type g of agent i remains for sure

until t+ ∆ and type g of the follower enters after delay ∆. Beginning at

time t+ ∆, type b of agent −i invests at rate φf (s) solving

0 = y − (1− ps)γc+ φf (s)(vl(ps, 0) + rI)

and agent i exits at rate φl(s) solving

vl(ps, 0) = (1− rdt− (1− p)γdt− φl(s)dt)vl(ps+dt, 0).

The exit and investment rates φl, φf are defined in a way that the leader

and follower are willing to randomize. Note that since delay is profitable

for the follower for all p < p∗f , we have

vl(ps, 0) < (1− rdt− γdt)vl(ps+dt, 0).

and thus φl > 0.

• If vl(pt+∆, 0) + rI, vl(pt+∆, 0) < 0, then type g of agent i remains in until

t+∆ if agent −i invests with delay ∆, and agent i exits otherwise. Type

g of agent −i invests with delay ∆, and type b of agent −i never invests.
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If agent i with signal g, who invested at some time t < t∗, deviates by exiting,

we assume that agent −i delays investment indefinitely while both agents are

out, yet ignores the deviation completely as soon as agent i re-enters, making

it a best response for the deviating agent to re-invest immediately upon exiting

(since it was optimal for him to enter in the first place). Given agent i re-

invests immediately, it is a best response for agent −i to stay out.4

(i) Derivation of the equilibrium investment rate of agents with signal g.

Henceforth, for each of the three cases above, denote by Vθ(si, s−i) the value

of agent i conditional on (1) state θ and (2) agent i with signal si being

the leader, and agent −i with signal s−i using the assigned follower strategy.

Similarly, let Wθ(si, s−i) be the value of becoming the follower. Note that

these payoffs are independent of time in the first phase, since the signal pair

(si, s−i) encapsulates all information that is exchanged in the first phase, so

that pt(si, s−i) = p0(si, s−i). Thus, each agent’s expected value of becoming

the leader is given by

U(qt(g)) = qt(g)E[Vθ(g, g)|si = g, s−i = g]+(1−qt(g))E[Vθ(g, b))|si = g, s−i = b].

Type g of each agent is willing to randomize if he is indifferent between invest-

ing immediately and waiting for another instant. Hence, the value function

for type g of the agent must satisfy the indifference condition

U(qt(g)) = µtqt(g)E[Wθ(g, g)|si = g, s−i = g]dt+ (1− rdt− µtqt(g)dt)U(qt+dt(g)).

(14)

By Ito’s Lemma, the indifference condition (14) can be written as

U(qt+dt(g)) = U(qt(g)) + dU(qt(g))dqt(g), (15)

where by definition of U , we have dU(qt(g))/dqt(g) = E[Vθ(g, g)]−E[Vθ(g, b)].

4Note that, since the follower and the leader have divergent beliefs at a history with a
single investment, our definition of symmetry imposes no restrictions after such histories.
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Bayes’ rule implies that the posterior belief at t+ dt is

qt+dt(g) =
qt(g)(1− µtdt)
1− qt(g)µtdt

.

The differential change in belief is therefore

dqt(g)

dt
≡ lim

dt→0

qt+dt(g)− qt(g)

dt
= −µtqt(g)(1− qt(g)). (16)

If we now substitute equations (15) and (16) in the indifference condition (14)

and ignore higher order terms, we obtain the expression

rU(qt(g)) = µtqt(g)E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]. (17)

Since p0(g, g) < p∗f , the right-hand side of this equation is strictly positive.

Simplifying and solving the equation for µt yields

µt =
rU(qt(g))

qt(g)E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]
. (18)

Here, µt is the rate of investment for type g of each agent in the symmet-

ric equilibrium at a given belief qt(g). Note that since p0(g, g) < p∗f , we

have Wθ(g, g) > Vθ(g, g), and thus µt ∈ [0,∞). (If p0(g, g) ≥ p∗f , then

Wθ(g, g) ≤ Vθ(g, g), and an equilibrium of the type constructed here does

not exist.) Substituting this last expression into Equation (16), we obtain the

evolution of the posterior qt(g) in equilibrium:

dqt(g) = −(1− qt(g))
rU(qt(g))

E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]
dt. (19)

We obtain the equilibrium belief and equilibrium investment rate at each time

t by solving Equation (19) with given initial belief q0. The initial value problem

(19) has the unique solution

qt(g) =
e−tβ

∗(p0(g,g))U(q0(g)) + (1− q0(g))E[Vθ(g, b)]

e−tβ∗(p0(g,g))U(q0(g))− (1− q0(g))E [Vθ(g, g)− Vθ(g, b)|si = g]
. (20)
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We now substitute qt(g) into Equation (18) and simplify to obtain the equi-

librium rate of investment

µ∗t =
e−tβ

∗(p0(g,g))U(q0(g))

e−tβ∗(p0(g,g))U(q0(g)) + (1− q0)E[Vθ(g, b)|si = g]
β∗(p0(g, g)). (21)

If rE[Vθ(g, b)] > 0 then the investment rate µ∗t diverges to +∞ as t → t∗,

where

t∗ = log

(
1 +

p0(g, g)

p0

E[Vθ(g, g)]

E[Vθ(g, b)]

)β∗(p0(g,g))

. (22)

If, on the other hand, E[Vθ(g, b)] < 0, then µ∗t converges to 0 as t→∞. Thus,

t∗ =∞.

(ii) Agents with signal b prefer to wait until t∗. For agents with signal b,

the incremental opportunity cost from waiting is rE[Vθ(b, s)|si = b]dt. The

expected incremental gain from waiting for this type is µ∗t qt(b)E[Wθ(b, g) −
Vθ(b, g)|si = b]dt. We show that when agents with signal g invest at rate µ∗t ,

then agents with signal b prefer to wait:

rE[Vθ(b, s)|si = b] ≤ µ∗t qt(b)E[Wθ(b, g)− Vθ(b, g)|si = b, s−i = g]. (23)

Because flow values are positive in state H and negative in state L, i.e., y ≥
0 ≥ y − γc, we have VH(si, s−i) ≥ 0 ≥ VL(si, s−i). Therefore:

Et[Vθ(si, s−i)|si = b] = pt(b)Et[VH(si, s−i)|si = b] + (1− pt(b))Et[VL(si, s−i)|si = b]

≤ pt(g)Et[VH(si, s−i)|si = b] + (1− pt(g))Et[VL(si, s−i)|si = b]

≤ pt(g)Et[VH(b, s−i)|si = g] + (1− pt(g))Et[VL(b, s−i)|si = g]

≤ pt(g)Et[VH(g, s−i)|si = g] + (1− pt(g))Et[VL(g, s−i)|si = g]

= Et[Vθ(si, s−i)|si = g].

The first inequality follows because pt(g) > pt(b). Note that according to our

prescribed strategies, agents with signal g invest earlier than agents with signal

b, and exit later. Therefore, we have Vθ(si, g) ≥ Vθ(si, b). Since qt(g) > qt(b),
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we thus have Et[Vθ(b, s−i)|si = g] ≥ Et[Vθ(b, s−i)|si = b] for each θ, which

explains the second inequality. The last inequality follows because the strategy

of type g is constructed to maximize the continuation payoff after investing.

Note that

1

qt(si)
E[Vθ(si, s−i)|si] =

pt(si)

qt(si)
E[VH(si, s−i)|si] +

1− pt(si)
qt(si)

E[VL(si, s−i)|si]

Because ρ > 1/2 and pt(g) > pt(b), it follows that

pt(b)

qt(b)
=

pt(b)

ρpt(b) + (1− ρ)(1− pt(b))
<

pt(g)

ρpt(g) + (1− ρ)(1− pt(g))
=
pt(g)

qt(g)

and similarly,
1− pt(b)
qt(b)

>
1− pt(g)

qt(g)

Combining the previous results, we find that

1

qt(b)
E[Vθ(si, s−i)|si = b] =

pt(b)

qt(b)
E[VH(si, s−i)|si = b] +

1− pt(b)
qt(b)

E[VL(si, s−i)|si = b]

≤ pt(g)

qt(g)
E[VH(si, s−i)|si = b] +

1− pt(g)

qt(g)
E[VL(si, s−i)|si = b]

≤ pt(g)

qt(g)
E[VH(si, s−i)|si = g] +

1− pt(g)

qt(g)
E[VL(si, s−i)|si = g]

=
1

qt(g)
E[Vθ(si, s−i)|si = g]

The previous inequalities, together with (17), imply

1

qt(b)
rE[Vθ(si, s−i)|si = b] ≤ 1

qt(g)
rE[Vθ(si, s−i)|si = g] (24)

= µ∗tE[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]. (25)

(iii) No exit before failure. If neither agent has invested at time t > t∗, then

it is common knowledge that both agents have observed bad signals, and thus

there is a unique symmetric continuation equilibrium in this case. Suppose

agent i invests at t < t∗ and subsequently deviates by exiting. As before, we
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assume that, after such a history, the non-deviating agent stays out forever

while both agents are out, and ignores the deviation as soon as the deviator

re-enters, making it a best response for the deviating agent immediately to

re-invest. This in turn makes it a best response for the first agent to stay

out.

Proof of Theorem 3. It is obvious that, prior to an accident, it can never

be optimal for either agent to switch more than once. The team’s objective

can therefore be written as

w(p, τ) = max {0, vl(p, τ) + vf (p, τ)} ,

where τ denotes the delay with which the follower invests. Using Equations

(2) and (3), we can write explicitly:

w(p, τ) = (1+e−rτ )py+(1−p)
[
λ1 + (2λ2 − λ1)e−(r+γ)τ

]
(y−γc)−(1+(p+(1−p)e−(r+γ)τ ))rI.

It follows from the definitions of λ1 and λ2 that 2λ2 − λ1 = λ1λ2. Therefore,

the marginal value of delaying the second investment is

∂w(p, τ)

∂τ
= re−rτ [−p(y − rI) + (1− p)(λ2(γc− y) + (r + γ)I)e−γτ ]. (26)

The expression in brackets is strictly decreasing in τ . This implies that

∂w(p, τ)/∂τ < 0 for all τ ≥ 0 whenever p > p∗2, where

p∗2 =
rI + γI + λ2(γc− y)

y + γI + λ2(γc− y)
, (27)

in which case it is socially optimal to make the second investment immedi-

ately. If p ≤ p∗2, then the socially optimal delay solves the first-order condition

dw(p, τ)/dτ = 0. Thus, the optimal delay is given by

τ s(p) =

(φ(p∗2)− φ(p))/γ if p < p∗1,

0 if p ≥ p∗1.
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Define ws(p) = w(p, τ s(p)). By Lemma 1, the functions vl and vf are increasing

in p which implies that ws is an increasing function. Since ws is continuous

with ws(0) < 0 and ws(1) > 0, it follows that there exists a unique threshold

p∗1 that solves ws(p∗1) = 0.

Proof of Theorem 4. Let P be the distribution over signals for given pa-

rameters p0 and ρ. We write P (si) for the probability that a given agent’s

signal is si and P (s1, s2) for the probability that the pair of signals is (s1, s2).

(1.) Suppose p0 > p∗f . Then, choose ρ∗ > 1/2 such that p0(b) > p∗f and

p0(b, b) > p∗2. As we show in the proof of Theorem 2, it follows that for

all ρ < ρ∗, there exists a pooling equilibrium in which each type of each

agent invests immediately. By Theorem 3, this equilibrium is efficient.

Hence W̃ ≥ E[Wθ(s1, s2)].

(2.) Let p∗f > p0 > p∗l . Choose ρ∗ > 1/2 such that p∗f > p0(g, g) and p0(b, b) ≥
p∗l . By Theorem 2, there exists an equilibrium with delayed entry. It

follows from arguments in the proof of Theorem 2 that the expected

equilibrium value of the good type of each agent is E[Vθ(g, s−i)] ≥ E[v∗l |g].

The inequality follows from the fact that leaders have the option to exit.

By Equation (23), bad types strictly prefer to delay investment at each

t < t∗. The expected payoff for an agent of type b who deviates by

investing before time t∗ is bounded below by

qt(b)vl(p0, τ
∗(p0(g, g))) + (1− qt(b))v∗l (p0(b, b), τ ∗(p0)) > E[v∗l |b].

Therefore, the expected social surplus for each agent is

W̃ > P (g)E[v∗l |g] + P (b)E[v∗l |b] = E[Wθ(s
1, s2)].

(3.) Let p0 = p∗f . Since p0(g, g) > p∗f , each agent with signal g invests imme-

diately. We show that there exists ρ∗ > 1/2 such that W̃ > E[Wθ(s1, s2)]

for all ρ ∈ (1/2, ρ∗). The equilibrium is with immediate investment, since
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p0(g, g) > p∗f . There cannot be a pooling eqilibrium, since p0(b) < p0 =

p∗f .

The social welfare per agent therefore satisfies the inequality

W̃ ≥ P (g)
[
q0(g)vl(p0(g, g), 0)+(1−q0(g))(ηvl(p0, 0)+(1−η)vl(p0, τ

∗(p̃η(b)))
]

+P (b)
[
q0(b)vl(p0, 0)+(1−q0(b))(ηvl(p0(b, b), 0)+(1−η)(vl(p0(b, b), τ ∗(pη(b)))

]
.

The right-hand side represents the ex-ante expected payoff for an agent

who invests immediately after each signal, which is a lower bound for the

equilibrium payoff. Note that P (g)q0(g) = P (g, g), P (g)(1 − q0(g)) =

P (b)q0(b) = P (b, g) and P (b)(1 − q0(b)) = P (b, b). Using q0(b)p0 + (1 −
q0(b))p0(b, b) = p0(b) together with the linearity of vl(p, 0), we can write

W̃ ≥ P (g, g)vl(p0(g, g), 0) + P (b, g)vl(p0, 0)

+ (P (g, b) + P (b, b))
[
ηvl(p0(b), 0) + (1− η)vl(p0(b), τ ∗(p̃(η, b))

]
.

When signals are public, then, after each realized pair of signals resulting

in the posterior belief p̌0, each agent’s equilibrium payoff is v∗l (p̌0) (when

ρ∗ is chosen so that p0(b, b) > p∗l for all ρ ∈ (1/2, ρ∗). Thus, the expected

welfare under public information can be written as

E[Wθ(s1, s2)] = P (g, g)v∗l (p0(g, g)) + P (b, g)v∗l (p0)

+ (P (g, b) + P (b, b))
[
q0(b)v∗l (p0) + (1− q0(b))v∗l (p0(b, b))

]
. (28)

Using the definition of τ ∗ in Lemma 1, we have

v∗l (p) = vl(p, τ
∗(p)) = py+(1−p)λ1(y−γc)+(1−p)e−(r+γ)τ∗(p)(λ2−λ1)(y−γc)−rI.

Since p0 = p∗f , we have τ ∗(p0) = τ ∗(p0(g, g)) = 0. We have that W̃ >
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E[Wθ(s1, s2)] if

ηvl(p0(b), 0)+(1−η)vl(p0(b), τ ∗(p̃(η, b)) > q0(b)vl(p0, 0)+(1−q0(b))v∗l (p0(b, b))).

(29)

We define ψ(p) := p
1−p = eφ(p) and α := r+γ

γ
> 1. Then, the left-hand

side of Inequality (29) can be written as

ηvl(p0(b), 0)+(1−η)vl(p0(b), τ ∗(p̃(η, b)) = p0(b)y+(1−p0(b))λ1(y−γc)

+ (1− p0(b))

[
η + (1− η)ψ(p̃(η, b))αψ(p∗f )

−α

]
(λ2 − λ1)(y − γc)− rI

(30)

From Bayes’ rule and the definition of ψ, we have

ψ(p0(b)) =
p0

1− p0

1− ρ
ρ

= ψ(p0)/ψ(ρ), ψ(p̃(η, b)) = ψ(p0(b))

(
ρ+ (1− ρ)η

1− ρ+ ρη

)
.

If we now use the previous equalities to factor out ψ(p0(b))αψ(p∗f )
−α from

the square brackets in (30), we obtain

ηvl(p0(b), 0)+(1−η)vl(p0(b), τ ∗(p̃(η, b)) = p0(b)y+(1−p0(b))λ1(y−γc)

+(1−p0(b))ψ(p0(b))αψ(p∗f )
−α

[
ηψ(ρ)α+(1−η)

(
ρ+ (1− ρ)η

1− ρ+ ρη

)α ]
(λ2−λ1)(y−γc)−rI.

(31)

The right-hand side of Inequality (29) is given by

q0(b)vl(p0, 0)+(1− q0(b))v∗l (p0(b, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+

[
q0(b)(1−p0)+(1−q0(b))(1−p0(b, b))ψ(p0(b, b))αψ(p∗f )

−α

]
(λ2−λ1)(y−γc)−rI.

(32)
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From Bayes’ rule it follows that

q0(b)

1− p0(b)
=
p0(b)ρ+ (1− p0(b))(1− ρ)

1− p0(b)
=

(
p0

1− p0

1− ρ
ρ

)
ρ+ (1− ρ) =

1− ρ
1− p0

,

1− q0(b)

1− p0(b)
=
p0(b)(1− ρ) + (1− p0(b))ρ

1− p0(b)
=

(
p0

1− p0

1− ρ
ρ

)
(1− ρ) + ρ =

ρ

1− p0(b, b)
.

Using these equalities together with the identity

ψ(p0(b, b)) =
p0(b)

1− p0(b)

1− ρ
ρ

= ψ(p0(b))ψ(1− ρ)

to factor out (1 − p0(b))ψ(p0(b))αψ(p∗f )
−α from the square brackets in

(32), we obtain

q0(b)vl(p0, 0) + (1− q0(b))v∗l (p0(b, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+(1−p0(b))ψ(p0(b))αψ(p∗f )
−α

[
(1−ρ)ψ(ρ)α+ρψ(ρ)−α

]
(λ2−λ1)(y−γc)−rI.

Define the functions,

h(η, ρ) := ηψ(ρ)α+(1−η)

(
ρ+ (1− ρ)η

1− ρ+ ρη

)α
, g(ρ) := (1−ρ)ψ(ρ)α+ρψ(ρ)−α.

Condition (29) is thus equivalent to infη h(η, ρ) > g(ρ). One calcu-

lates that the partial derivative of h at ρ = 1/2 is limρ→1/2 ∂ρh(η, ρ) =

4α (2η2 − η + 1) /(η + 1). The function limρ→1/2 ∂ρh(η, ρ) has its mini-

mum in η at
√

2 − 1 and is thus larger than 4
(
4
√

2− 5
)
> 0. On the

other hand, g′(1/2) = 0. Thus, there exists a ρ∗ > 1/2 such that for all

ρ ∈ (1/2, ρ∗), we have W̃ > E[Wθ(s1, s2)].
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