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Abstract

We study a two-player game of strategic experimentation with private information in which

agents choose the timing of risky investments. Agents learn about future returns through pri-

vately observed signals, others’ investment decisions and from public experimentation outcomes

when returns are realized. We characterize symmetric equilibria, and relate the extent of strate-

gic delay of investments in equilibrium to the primitives of the information structure. Agents

invest without delay in equilibrium when the most optimistic interim belief exceeds a threshold.

Otherwise, delay in investments induces a learning feedback that may either raise or depress

beliefs and investment choices. We highlight how private information in strategic experimenta-

tion can increase ex-ante welfare because of strategic uncertainty and due to an “encouragement

effect of private information.”

Keywords— Strategic experimentation with private information, Signaling, Bayesian learning, Strategic

delay, Investment timing

1 Introduction

Learning from peer experience is an important contributor to the proliferation of innovative tech-

nology, and as such promotes economic development and growth. That observational learning plays

a crucial role in the diffusion of innovation is empirically well-documented. Health professionals

learn about medical innovations from the experience of their colleagues (Becker, 1970), households

learn about new consumer products from friends and neighbors (Liu et al., 2014; Goolsbee et al.,

2002), farmers learn about the qualities of new types of crop from the performance of their peers
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(Conley and Udry, 2010) and law-makers take into account the experience with legislation in other

countries (Aidt and Jensen, 2009).

Theoretical literature has extensively studied the effects of observational learning from peers on

individual incentives to engage in costly experimentation (e.g., Bolton and Harris, 1999; Keller and

Rady, 2010a; Klein and Rady, 2011; Keller and Rady, 2015). In these models, agents continuously

decide how much of a valuable resource to invest into a technology with returns drawn from an

uncertain distribution. This literature typically presumes symmetry in information, which, from an

empirical perspective, is a relevant abstraction from reality. Differences in information in school-

ing or personal experience, for example, have been found to be an important determinant in the

adoption of new technologies (Foster and Rosenzweig, 2010). In this paper, we propose a tractable

model of strategic experimentation with private information. Two decision-makers decide on the

timing of an investment into a technology that generates returns drawn from a fixed distribution.

The distribution of returns is the same for both agents, but not known to either of them. Each

decision maker has access to some initial private information about future returns. After an agent

makes the investment, he receives a continuous payoff flow. If the technology is of high quality,

he receives a positive return until he stops experimenting with the technology. However, if the

technology is of low quality, its use will inevitably lead to a disastrous failure associated with a

significant loss for the owner.

The specification of our model is both natural and tractable. Our model captures important

features of many real-world settings that involve an opportunity to invest in a new technology

(e.g., a drug, chemical, mining procedure) with obvious benefits but unknown, and potentially

disastrous, side-effects. The presence of asymmetric information and set-up costs in such a setting

gives rise to an initial signaling stage. Due to our bad-news learning specification (Keller and Rady,

2015), agents become more optimistic over time, and experimentation will typically continue after

investment unless a failure occurs, in which case the state is revealed and all experimentation stops.

Bad-news learning, combined with strategic investment timing in the presence of set-up costs, thus

tractably separates the game into an early signaling phase and a later experimentation phase.

We characterize symmetric equilibria in our game. We show that the way private information

is aggregated in equilibrium crucially depends on the most optimistic interim belief. If this belief

exceeds a certain threshold, optimistic agents invest without delay, so that all private information

that is revealed in equilibrium is revealed in a single lump at time zero. If the most optimistic

interim belief lies below the threshold, even optimistic agents delay their initial investment and

private information is aggregated gradually. The speed at which information is conveyed through

signaling varies with time and its evolution depends on the prior belief. For optimistic prior beliefs

exceeding a given threshold, learning accelerates and its speed eventually shoots towards infinity,

so that all information is conveyed by some finite point in time. Otherwise learning gradually slows

down and eventually goes to zero as time approaches infinity.
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A key finding in our paper is that informational asymmetries can increase social welfare. Our

results highlight some important aspects of the effects of informational asymmetry on incentives

for experimentation. Specifically, we identify two distinct sources of inefficiencies and mechanisms

in which informational asymmetry mitigates these. The first source of inefficiency, which we call

leadership aversion, stems from the agents’ incentives to refrain from investing, in the hope that

the other agent may invest first, subsequently providing free information through experimentation.

This effect is an expression of the usual free-riding problem in models of strategic experimentation

and is the result of learning from outcomes. The second source of inefficiency results from a strategic

delay of investments and arises even in models in which agents cannot observe their opponents’

outcomes. They postpone investments in order to observe their opponent’s actions and to draw

inferences about the state of the world. Inefficiencies due to strategic delay, which are the result

of learning from actions, are familiar from models of social learning such as Chamley and Gale

(1994a).

We find that information asymmetry mitigates these inefficiencies in two ways, through strategic

uncertainty and encouragement. Strategic uncertainty plays a role in equilibria in which signaling

conveys information gradually over time. Optimistic agents then play mixed strategies, and they

do so to keep each other indifferent between investing and waiting. Given the behavior of optimistic

agents, a pessimistic agent has a strict incentive to wait, and he is better off compared to the case

in which his signal was known. An encouragement effect arises because each agent benefits from

the other’s experimentation, and thus has an incentive to behave in a way that induces the other to

experiment more. This means in particular that an agent who received a bad signal may want to

invest early to conceal this information from the other agent. This effect is somewhat akin to the

encouragement effect in Bolton and Harris (1999), but, in our model, relies on the agents’ desire

to signal good news about their private signals. By contrast, agents have no private information in

Bolton and Harris (1999).

A relatively small number of papers have investigated the role of private information in games of

informational externalities.1 Rosenberg et al. (2013) investigate a game of strategic experimentation

with exponential two-armed bandits, where players’ action choices are public information, while the

outcomes of these actions are private information. A player’s switch to the safe arm is irreversible.

They show that, in their setting, public information is unequivocally good for welfare. Their setup

differs from ours inter alia by the fact that their players accrue private information over time, while

ours are privately informed at the outset. Dong (2017) considers a good-news learning model in the

spirit of Keller et al. (2005) in which it is commonly known that one of the two players is privately

informed at the outset. Heidhues et al. (2015) investigate the problem with public reversible actions

1The problem of strategic information acquisition in bandit games has been introduced by Bolton and Harris
(1999) in a Brownian-motion environment. Keller et al. (2005) have extended the analysis to a Poisson setting, while
Keller and Rady (2015) have introduced “bad-news” Poisson events. Private information in this setting has also been
analyzed in Rosenberg et al. (2007).
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and private payoffs while allowing for cheap-talk communication among players. They show that

equilibria with public information can always be replicated under private information so that private

information is unequivocally good for welfare. This conclusion heavily depends on their assumption

that players can communicate with each other. In contrast, Bonatti and Hörner (2011) analyze

the case of unobservable and reversible actions and observable outcomes and find that private

information boosts welfare in their setting. The reason is that, with observable actions, shirking

by a player will render the other players more optimistic, and hence more willing to pick up the

slack. This, in turn, makes deviating more attractive under public information.

In Chamley and Gale (1994b) and Murto and Välimäki (2011, 2013), information is dispersed

throughout society, and agents only make a single decision, i.e., when to exit the game. Once a

player has exited, he is no longer affected by others’ decisions. As in our setting, information is

inefficiently aggregated because investors have incentives to delay their exit decision so as to acquire

more information by observing the behavior of others. The players do not observe the results of

their partners’ experimentation directly. In our setting, by contrast, players continue to be affected

by others’ actions after making their investment decision and thus have incentives to influence their

partner’s actions and beliefs when making that decision.

A closely related paper is Décamps and Mariotti (2004), who study a two-player game of irre-

versible investments. Private information in their setting, however, pertains to the players’ idiosyn-

cratic investment costs, while all information concerning the common quality of the investment

opportunity is public. Since, as in our setting, players get additional (public) information after the

other player has invested, they prefer the role of the follower and thus have incentives to convince

each other that their own costs of investment are high. Once they have made their irreversible in-

vestment decision, Décamps and Mariotti (2004)’s players do not care about their partner’s actions

any longer. In our setting, however, a player prefers his partner to invest as soon as possible, even

conditionally on having invested himself. Thus, in contrast to Décamps and Mariotti (2004), our

players have incentives to render their partners as optimistic as possible concerning the common

investment prospects.

Moscarini and Squintani (2010) consider a model of a winner-takes-all R&D competition in

which firms observe an initial private signal about the unknown type of a research project, which

is drawn from a continuous distribution. Over time, firms learn about the project’s type from their

competitor’s actions and the lack of success in the past, deciding when to exit irreversibly. They

show that the aggregate duration of experimentation is longer under private information, when

firms may also exit simultaneously, a non-generic outcome under public information. Since players

take no action besides deciding when to exit irreversibly and there are no payoff externalities, their

action choice is not impacted by signaling motives, in contrast to our setting.

Wagner (2018) and Margaria (2017) analyze related settings, which are also distinguished from

our setting by the signaling role of experimentation. Indeed, in Wagner (2018), all learning and
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experimentation stop after an investment has been made. In Margaria (2017), agents’ private

signals arrive over time and represent fully conclusive bad news. Therefore, when an agent invests,

it will be commonly known that he has not received a bad signal before, and there is nothing more

left to learn from him.

The potential welfare improvement of private information is related to the “smoothing effect of

uncertainty”(Morris and Shin, 2002). Teoh (1997) demonstrates this effect in a model of public-good

provision, where the marginal return to agents’ investments is determined by an uncertain state of

the world. The author shows that non-disclosure of information may increase ex-ante welfare when

the investment has marginally diminishing returns because the loss resulting from a reduction in

investment after the release of bad news outweighs the benefits from increased investment when

the information is favorable. This is the same mechanism that drives the main result in our paper:

when bad news is publicly disclosed, free-riding and leadership-aversion increase, leading to an

over-proportional reduction in the expected value of an investment.

2 Model

There are two agents, indexed i = 1, 2. Time t ∈ R+ is continuous, with an infinite horizon.

Future payoffs are discounted at the common discount rate r > 0. Each agent decides when to

initiate a project which generates a stochastic payoff stream that depends on an unknown state of

the world θ ∈ {G,B}, which is either “good” (θ = G) or “bad” (θ = B). Agents can choose to

start or end the project at any time, but every time the project is initiated, an investment of size

I ∈ (0, y/r) is required. While the project is operational, it yields a flow return of y > 0 in either

state. However, when the state is bad, accidents occur at random times corresponding to the jump

times of a time-homogeneous Poisson process with parameter γ > 0. Accidents never occur in state

G. Conditionally on the state being B, the arrival times of accidents are independent across agents.

An agent whose project causes an accident incurs a lump-sum cost of c > 0. The agents’ common

prior belief that the state is G is p0 ∈ (0, 1). At the outset, each agent i = 1, 2 receives a signal

si ∈ {g, b}, which provides information about the realization of the state. Either agent’s signal

is correct (i.e., is equal to g in state G and equal to b in state B) with probability ρ ∈ (1/2, 1).

We assume that conditionally on θ, the signal realizations are independent across agents. Because

signal g is positively correlated with the good state G, and b is positively correlated with the bad

state B, we call g a “good” signal and b a “bad” signal. Moreover, we commonly call an agent who

observed a good signal “optimistic” and an agent who observed a bad signal “pessimistic.”

We model the continuous-time environment as a repeated stopping game with multiple “phases”.

At the beginning of the first phase, the agents decide how long to wait before making the investment,

conditionally on the other agent not having invested yet. The initial stage ends after the first agent

invests or both invest simultaneously. If only one agent invests, then the agent who invested is called

the “leader”, and the other the “follower”. In the second phase, each agent who invested decides
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if and when to exit while an agent who did not invest decides when to enter, each conditionally

on the other agent not moving first. Later phases proceed in a similar fashion. We assume that

γc > y, so that after an accident has arrived and players have learned that θ = B, it is a dominant

action for players not to invest, or, respectively, to exit a prior investment immediately. We take

this as given in our subsequent analysis, and treat all histories following an accident as terminal

histories.

Formally, the structure of the game is as follows. We define an investment history at time

t ≥ 0 to be a profile ht = ((i1, τ1), . . . , (int , τnt)) with 0 ≤ τ1 ≤ . . . ≤ τnt ≤ t, where τk for each

k = 1, . . . , nt represents a “switching time” at which agent ik ∈ {1, 2} has changed his investment

decision, and nt ∈ N represents the total number of instances of such changes in the past. We

refer to nt as the length of history ht. A behavioral strategy for agent i is then given by a family

of cumulative distribution functions {Fi(·|si, ht)}ht∈Ht with Fi(t
′|si, ht) = 0 for all t′ < τnt . Here,

Fi(t
′|si, ht) represents the probability that agent i with signal si takes action (invests or exits)

before or at time t′ ∈ [τnt ,∞] following investment history ht, conditionally on the other agent −i
not taking action before t′. A profile of behavioral strategies induces a distribution over switching

times for each agent i. Denoting by (τ ik)k∈N0 the random investment and exit times for player i,

the expected normalized payoff for agent i at any time t is

Et

[ ∞∑
k=0

(∫ τ i2k+1∨t

τ i2k∨t
e−r(ξ−t)r(y − 1{θ=B}γc)dξ − 1{τ i2k+1>t}

e−r(τ
i
2k+1−t)rI

) ∣∣∣ si, ht] . (1)

We say that an agent is “invested” at any history at which he has performed an odd number of

switches. Otherwise this agent is called “out”.

Our solution concept is symmetric perfect Bayesian equilibrium. A perfect Bayesian equilibrium

is a pair of behavioral strategies, together with a system of beliefs for each agent, which assigns a

probability distribution over signals and the state of the world at each history, such that (i) each

agent’s strategy maximizes his expected payoff, given his belief over the state and the other agent’s

signal and (ii) beliefs are updated via Bayes’ rule at any history that lies in the support of the

distribution over histories induced by the agents’ strategies. We shall say that a perfect Bayesian

equilibrium is symmetric if the players’ equilibrium strategies prescribe the same (mixed) action

whenever they have the same beliefs and are in the same mode, that is, they are either both invested

or both out.

As a restriction on off-path beliefs, we impose that after one agent’s deviation from the equi-

librium path, the other agent’s belief about the state does not change beyond what he could learn

from the deviator’s signal. We further assume that any deviation resulting in an unexpectedly early

investment of one agent conveys good news to the competitor, and unexpected delay conveys bad

news. This restriction is innocuous, its sole purpose being to rule out a class of artificial equilibria

in which agents are deterred from deviating because of the other agent’s off-path belief after their
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deviation. For example, it is straightforward to construct an equilibrium in which the good type

of each agent does not invest because the other agent would then be convinced that the investing

agent’s type is bad, and would, therefore, delay his own investment excessively, so that it is no

longer profitable for good types to invest.

Throughout, we denote by pt the (history-dependent) public posterior belief that θ = G at time

t, i.e., the belief held by a hypothetical outside observer, who started out with a prior belief of p0

and observed the public history but did not know about the initial signals. By the same token,

we denote by qit the public posterior belief assigned to agent i’s type being g (we omit the index

i whenever the belief is the same for each agent). Furthermore, we write pt(s) and qit(s) for the

respective posterior probabilities conditional on a single signal s ∈ {g, b}, and, analogously, pt(s, s
′)

for the posterior probability about the state, conditional on a pair of signals (s, s′) ∈ {g, b}2. Note

that, since signals are i.i.d. and symmetric, we have pt = pt(g, b) = pt(b, g).

3 Equilibrium analysis

3.1 Public information

We first consider the case in which both signals are publicly observable. This scenario will serve as

a benchmark for the case with privately observed signals, and it allows us to establish connections

to existing models of strategic experimentation without private information. When signals are

publicly observed, the agents share a common belief about the state after observing the realization

of signals. We denote their common belief by p̌0 := p0(s1, s2). Consider an investment history at

some time t at which k ≥ 1 agents are currently invested. Since investments and the arrival of

accidents are publicly observable, both agents update their belief about the realization of the state

of the world based on the observed actions and payoffs. In the absence of any accidents following an

investment, the posterior belief p̌t continuously evolves following the familiar differential equation

dp̌t
dt

= kγ p̌t(1− p̌t).

Throughout, we assume that the investment I that is required to initiate a project is large enough

to ensure that agents remain invested after they initiated their project (unless an accident occurs),

even if the other agent deviates from his equilibrium strategy. We begin by constructing a symmetric

equilibrium with this property, showing that for sufficiently large I, this equilibrium is indeed unique

in the class of symmetric equilibria.

We can derive a symmetric equilibrium without exits by backwards induction. At an investment

history at which both agents are already invested, both remain invested indefinitely. At a history at

which only one agent invested, the leader remains invested indefinitely, and the follower decides how

long to wait before making the investment. Before the first investment, each agent must decide

how long to wait, conditionally on the other agent not having invested first. To construct our
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equilibrium, we thus need to derive the follower’s optimal investment delay. We then proceed to

find a distribution over initial investment times that are mutually optimal given the continuation

play, verifying that it is indeed never optimal for either agent to exit prior to an accident.

We begin by considering a history at which one agent is invested (k = 1). The follower benefits

from the leader’s experimentation in this case, because of the possibility that the leader experiences

an accident. If the leader experiences an accident, the follower learns that the state of the world is

bad without incurring any losses. Depending on the follower’s posterior belief about the state, it

may thus be profitable for him to delay the investment. Assuming that the follower delays his own

investment by some duration τ (at which he is sufficiently confident that the state is good), the

expected net present value before paying investment costs I for the leader at any belief p is given

by

vl(p, τ) = py + (1− p)
(

(1− e−(r+γ)τ )λ1 + e−(r+γ)τλ2

)
(y − γc)− rI. (2)

where by λk = r/(r + kγ) we denote the marginal value of a discounted unit payoff stream up

to termination at a random time arriving at constant rate kγ for k = 1, 2. By the same token,

assuming that the leader remains invested indefinitely, the expected present value of the follower

when delaying the investment by a duration τ is given by

vf (p, τ) = e−rτpy + e−(r+γ)τ (1− p)λ2(y − cγ)− (p+ (1− p)e−γτ )e−rτrI. (3)

Define the log-likelihood ratio φ(p) := ln(p)−ln(1−p). The following lemma reports basic properties

of the functions vl and vf .

Lemma 1. The function vl(p, τ) is linearly increasing in p, convex and decreasing in τ for every

p ∈ (0, 1) and supermodular in (p, τ). The function vf (p, τ) is linearly increasing in p and has a

single peak in τ at

τ∗(p) =


(
φ(p∗f )− φ(p)

)
/γ if p < p∗f

0 if p ≥ p∗f
(4)

for every p ∈ (0, 1), where

p∗f =
λ1(rI + γI) + λ2(γc− y)

λ1(y + γI) + λ2(γc− y)
. (5)

All proofs are found in the Appendix. We write v∗f (p) = vf (p, τ∗(p)) and v∗l (p) = vl(p, τ
∗(p))

for the values of the leader and the follower, respectively, given the follower uses the optimal delay.

Since τ∗ is weakly decreasing in p, and vl and vf are strictly increasing in p as well as decreasing

in τ , it follows that v∗l and v∗f are strictly increasing functions in p. Moreover, v∗l is continuous,
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positive if p = 1, and negative if p = 0. Hence, it has a unique root on (0, 1), which we denote by

p∗l . Note that, by definition, of p∗f and p∗l , we have v∗f (p∗f ) = v∗l (p
∗
f ) > 0 and thus p∗l < p∗f .

Consider now a history of the game, in which neither agent has invested, so that k = 0. In this

case, each agent anticipates in this conjectured equilibrium that, once they invest, the follower will

delay their investment by τ(p̌0). If p̌0 < p∗l , then neither agent is willing to invest and become the

leader in any equilibrium in which players invest at most once, by definition of p∗l . If p∗l < p̌0 < p∗f ,

then the value of becoming the leader is positive. Note, however, that there can be no symmetric

equilibrium in pure strategies in which players invest at most once, as the best response to the other

agent’s investment would be not to invest and vice-versa. The same argument rules out atoms in

mixed-strategy equilibrium. Thus, if there is a symmetric equilibrium, it must be in atomless mixed

strategies, with each agent investing at a rate that renders the other agent indifferent between

investing immediately and delaying his investment by any length of time. As long as neither agent

has made the investment, no new information becomes available, so that the agents’ equilibrium

flow rate of investment β is constant over time. We can immediately calculate the equilibrium

investment rate, using the fact that each agent must be indifferent between making the investment

immediately and delaying investment by another instant. This implies that each agent must invest

at a rate β that solves

v∗l (p̌0) = βv∗f (p̌0)dt+ (1− rdt− βdt)v∗l (p̌0).

Solving the equation for β gives the investment rate as a function of the common belief p̌0:

β∗(p̌0) = max

{
rv∗l (p̌0)

v∗f (p̌0)− v∗l (p̌0)
, 0

}
. (6)

It follows from p̌0 < p∗f and Lemma 1 that the denominator of β∗ is always strictly positive, and,

therefore, the rate of investment is positive whenever the value of becoming the leader is greater

than zero. Moreover, the difference between the follower’s and the leader’s value converges to 0 as

p̌0 approaches the threshold p∗f , so that the investment rate β∗(·) approaches infinity as p̌0 → p∗f .

Note also that the payoff for each agent in this case is, by construction, equal to v∗l (p̌0).

To verify that this is indeed an equilibrium, we need to check that no agent wants to exit once

he has invested. Both agents are invested whenever p̌0 ≥ p∗f ; by definition of p∗f , no agent can gain

from exiting. When p̌0 < p∗f and only one agent has invested, then the leader would receive at most

v∗f (p̌t) after exiting, while he obtains v∗l (p̌t) + rI if he remains indefinitely if no accident occurs. If

I is close to y/r, however, then v∗f (p̌t) is close to zero. On the other hand, v∗l (p̌t) + rI is close to y,

since v∗l (p̌t) ≥ 0, for otherwise an agent would not want to become leader in the first place. Thus,

for I close to y/r, we have v∗l (p̌t) + rI > v∗f (p̌t), which implies that the leader cannot gain from

exiting.

The above equilibrium turns out to be unique provided the investment I required to initiate the

project is sufficiently large. A large investment deters agents from making frequent switches, and
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thus makes it costly for the agents to respond to deviations by their opponent. When I is small, it

is possible to construct an equilibrium in which both agents invest immediately, and every deviation

is punished with immediate exit by the competitor. For large values of I, exiting in response to a

deviation by the opponent is not a credible threat and thus cannot be part of any equilibrium.

A necessary condition for simultaneous investment to be part of an equilibrium is that the

payoff for each agent be non-negative. An agent’s payoff from jointly investing immediately, given

a posterior belief p̌t, is given by

vl(p̌t, 0) = p̌ty + (1− p̌t)λ2(y − γc)− rI. (7)

This payoff is non-negative if and only if p̌t ≥ p, where

p =
rI + λ2(γc− y)

y + λ2(γc− y)
. (8)

Clearly, there can be no initial investment in equilibrium when the prior belief p̌0 lies below p, since

then the payoff from investing is necessarily negative for each agent.

Now, define p̂∗l to be the lowest posterior belief at which the payoff of already being invested as

the leader is non-negative, i.e. v∗l (p̂
∗
l ) + rI = 0. The following result shows that, for I sufficiently

large, the thresholds p̂∗l , p, p
∗
f and p∗l defined above satisfy the following chain of inequalities.

Lemma 2. There is an I0 ∈ (0, y/r) such that, for I ≥ I0, we have

p̂∗l < p < p∗l < p∗f < 1.

The lemma implies in particular that, for I sufficiently large, joint investment can never arise in

equilibrium at any posterior belief below the threshold p∗f , because each agent correctly anticipates

that the opponent would never again exit following the investment (except after a failure). If agent

1, for example, was to invest at some posterior p̌t < p∗f , then agent 2 would prefer to wait and

become the follower, knowing that agent 1 would not want to exit.

The following theorem summarizes these findings, and characterizes the unique symmetric equi-

librium for symmetrically informed agents.

Theorem 1 (Symmetric equilibrium with public information). There exists I∗ ∈ (0, y/r) such

that, for all I > I∗, there is a symmetric equilibrium, in which neither agent exits before the arrival

of an accident. If p̌0 ≥ p∗f , both agents invest immediately. If p∗l < p̌0 < p∗f , each agent invests at

constant rate β∗(p̌0) given by Equation (6) in the first phase, while the follower starts the project

with delay τ∗(p̌0). If p̌0 ≤ p∗l , neither agent invests. This equilibrium is unique in the class of

symmetric equilibria.

The equilibrium structure mirrors that of the symmetric equilibrium in Keller and Rady (2015),
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in the sense that there are two belief thresholds with the property that there is no experimentation

below the first, and maximum experimentation above the second threshold, with randomization for

all beliefs that lie between these thresholds. For intermediate prior beliefs, the first phase of the

game is strategically similar to standard “war-of-attrition” games (see, e.g., Bulow and Klemperer,

1999).

We focus our analysis on the case in which the investment cost I is substantial in order to

isolate effects that result from the presence of learning externalities. The strategic-experimentation

literature typically isolates these informational effects by restricting attention to stationary Markov

equilibria, in which the agents’ strategies are time-invariant functions of their posterior belief about

the state of the world.2 This focus on Markov equilibria limits punishments, as agents cannot

respond to payoff-irrelevant aspects of their competitors’ behavior. In our model, limiting attention

to Markovian strategies does not have the same effect. Indeed, a Markovian strategy in our model

must depend on agents’ modes, that is, whether they are currently invested or not, since this is

immediately payoff-relevant. But this implies that, in a Markov equilibrium, an agent’s behavior

may depend directly on the actions of his competitor, so that Markov equilibria do not isolate the

strategic effects from observational learning. Indeed, as already mentioned, for small values of I, it

is possible to construct an equilibrium in which both agents invest immediately, and every deviation

is punished with immediate exit by the competitor.

3.2 Private information

We now turn to equilibria in the case of private signals. The equilibria differ from the case of

publicly observed signals in that the presence of private information exacerbates uncertainty and

introduces signaling incentives. Uncertainty is enhanced because the agents are both less informed

about the state of the world and about their opponent’s behavior. Signaling incentives arise due to

learning spill-overs and social learning: since each agent benefits from the other’s experimentation,

each has an incentive to behave in a way that makes the other agent more optimistic in order to

encourage him to engage in more experimentation.

These two forces, uncertainty and signaling incentives, influence the way information is ag-

gregated in equilibrium. In the equilibria we characterize, the way private information is revealed

depends crucially on whether the most optimistic interim belief p0(g, g) exceeds the follower thresh-

old p∗f or not. If p0(g, g) ≥ p∗f , optimistic agents invest without delay, so that all private information

that is revealed in equilibrium is revealed in a lump at time zero. Otherwise, optimistic agents de-

lay their initial investment while pessimistic agents wait, so that private information is aggregated

continuously over time.

The following result characterizes three different classes of equilibria and conditions for their

existence that depend on the prior belief p0 ∈ (0, 1) and the signal precision ρ ∈ (1/2, 1).

2An exception is Hörner et al. (2018), who analyze non-Markovian equilibria in this context.
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Theorem 2 (Symmetric equilibrium with private information). There is a I∗∗ ∈ (0, y/r) such that,

for all I > I∗∗, there exists an equilibrium in which no agent exits prior to an accident, followers

delay by τ∗ and the following holds.

(1.) Suppose p0 ≥ p∗l and ρ ∈ (1/2, 1) are such that p0(g, g) ≥ p∗f . Then there exists a symmetric

equilibrium in which type g invests immediately. Type b of each agent invests immediately with

some probability η∗ ∈ [0, 1], and with probability 1− η∗, he invests at a random time arriving

at constant rate β∗(p0(b, b)).

(2.) Suppose p0 < p∗l and ρ ∈ (1/2, 1) are such that p0(g, g) ≥ p∗f . Then there exists a symmetric

equilibrium in which type g invests immediately with some probability ν∗ ∈ [0, 1], and with

probability 1− ν∗ does not invest. Type b never invests.

(3.) Suppose p0 < p∗f and ρ ∈ (1/2, 1) are such that p0(g, g) < p∗f . Then there exists a symmet-

ric equilibrium in which type g of each agent invests at rate µ∗t ≥ 0 given by (21). Type b

delays investment until (possibly infinite) t∗ > 0, given by (22), and invests at constant rate

β∗(p0(b, b)) thereafter.

We refer to the first two types of equilibria as equilibria with “immediate investment,” and to

the latter as an equilibrium with “delayed investment.” Whether the equilibrium exhibits delayed

investment or not depends crucially on the position of the maximum interim belief p0(g, g) in

relation to the follower threshold p∗f , because the relative location of these beliefs indicates whether

optimistic agents can gain from free-riding. Indeed, suppose there was an equilibrium with delayed

investment when p0(g, g) > p∗f , and consider the perspective of agent i with signal g. If the

other agent’s signal is good as well, then conditionally on this event, both agents would prefer to

invest immediately because their posterior is above the threshold p∗f below which free-riding can

be profitable. On the other hand, if agent −i’s signal is bad, then agent −i will certainly not

invest before time t∗, and thus our agent i with signal g would prefer to invest immediately. Hence,

irrespective of the signal of the other agent, an optimistic agent does not gain from waiting, and

thus there cannot be an equilibrium with delayed investment. 3

While equilibria with delayed investment do not exist when p0(g, g) > p∗f as argued above, there

may be equilibria with immediate investment for p0(g, g) < p∗f . For example, consider the case of

a low prior and strong signals, so that p0 is close to zero, and p∗l < p0(g, g) < p∗f . In this case,

there may be an equilibrium (depending on the level of I) in which each agent with signal g invests

immediately, stays invested if and only if the other agent invests immediately as well, and otherwise

exits immediately. Agents with signal b never invest. In such an equilibrium, free-riding still has

value for agents with good signals, but they nevertheless invest due to signaling incentives. If they

chose not to invest, the other agent would infer a bad signal and immediately exit in the second

3Formally, this follows from Equation (18) in the proof of Theorem 2.
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phase, so that the first agent would not be able to free-ride. This is again an expression of the

encouragement effect stemming from the agents’ incentive to signal good news to one another by

investing.

Equilibria with immediate investment arise either when signals are very informative or if the

prior belief is very high. Such equilibria may be pooling, partially separating, or fully separating. A

high prior belief and weak signals result in pooling, where each agent invests immediately. Indeed,

if the interim belief of pessimistic agents, conditional on their own signal, is high enough, then

it is always optimal for them to invest immediately. On the other hand, when signals are highly

informative, the equilibrium tends to be partially or fully separating. Intuitively, an informative

good signal provides a strong incentive for an agent to invest, while an informative bad signal

makes investing costly. However, immediate investment communicates good news that makes one’s

opponent more willing to invest, which, in turn, generates a positive informational externality.

As a result, pessimistic agents have incentives to pretend to be optimistic, in order to encourage

the other agent to experiment. This effect is reminiscent of the encouragement effect known from

models of strategic experimentation without any private information such as (Bolton and Harris,

1999; Keller and Rady, 2010b). There, the encouragement effect describes the incentive of an agent

to experiment, driven by the possibility of generating good news in the future, which induces more

experimentation by others in the long run. Here, the mechanism is slightly different. Agents who

hold private information have incentives to experiment to conceal bad news, thereby encouraging

their opponents to experiment more. Accordingly, we label this effect “encouragement through

signaling”.

Equilibria exhibit delayed investment when the prior is not too high and signals not too infor-

mative. In an equilibrium with delayed investment, optimistic agents engage in an attrition game

similar to the case of public information, while pessimistic agents simply wait. Optimistic agents

delay investment because they benefit from the possibility that their opponent invests first and

then subsequently provides free information. Because only optimistic agents invest with positive

probability, the agents learn about the other’s type while they wait. As long as neither agent

invests, each agent becomes gradually more certain that the other one has observed a bad signal.

This gradual change in beliefs about the other’s type, in turn, affects the agents’ incentives to

invest. The interaction between belief updating, incentives and actions creates a learning feedback

loop that either accelerates or dampens the speed of learning.

The effects of the feedback loop can be seen in the dynamics of investment rates illustrated in

Figure 1. Here E[Vθ(si, s−i)] denotes the equilibrium payoff from being a leader in state θ for an

agent with signal si, when his opponent’s signal is s−i. The upper branch in the figure corresponds

to the case in which the expected equilibrium payoff E[Vθ(g, b)] > 0 from being an optimistic leader,

conditional on the opponent’s signal being bad, is positive. In this case, an agent of type g wants

to invest regardless of his opponent’s type. In equilibrium, each optimistic agent invests at a rate
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E[Vθ(g, b)] < 0

E[Vθ(g, b)] = 0

E[Vθ(g, b)] > 0

t

µ∗
t

Figure 1: Three branches of equilibrium investment rates.

that makes his optimistic opponent just indifferent between investing and waiting. The longer an

optimistic agent waits for the other to invest first, the more convinced he becomes that the other’s

delay is due to his signal being bad. In equilibrium, therefore, optimistic agents must increase

their rates of investment in order to continue to make the good type of the other agent indifferent

between waiting and investing. This increase, in turn, accelerates the decline in beliefs, which

requires a further increase in the investment rate of optimistic agents. The result is an escalating

feedback-loop between investment and learning rates, which causes investment rates to shoot off to

infinity, so that all private information is revealed by some finite time t∗.

The lower branch in Figure 1 corresponds to the case in which type g’s worst-case continuation

payoff E[Vθ(g, b)] from an immediate investment is negative. As before, the longer an optimistic

agent waits for the other to invest first, the more convinced he becomes that the other’s deferral is

due to his signal being bad. In this case, the expected value of becoming the leader diminishes over

time. In order for optimistic agents to continue to be indifferent between waiting and investing,

they must decrease their rate of investment gradually. This reduction again triggers a feed-back

loop, in which decreasing investment rates slow down learning, which in turn dampens investments

and so on. Investment rates eventually tend to 0 and the agents’ private information is never fully

revealed.

If E[Vθ(g, b)] = 0, finally, a type-g agent would be indifferent between investing and staying out

if he knew his partner to be of type b. In this case, agents of type g invest at a constant rate in

equilibrium, so that agents’ beliefs that their partner is of type g decline over time, yet all private

information is only revealed in the limit as t→∞.
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4 Welfare and transparency

In this section, we consider welfare properties of the equilibria derived in the previous sections.

Our notion of efficiency corresponds to a setting in which agents pool their private information and

commit to a strategy at the outset of the game, seeking to maximize the sum of their payoffs. The

following result characterizes this cooperative solution.

Theorem 3 (Cooperative benchmark). There exist thresholds p∗1 < p∗l and p∗2 ∈ (p∗1, p
∗
f ), so that it

is socially optimal for both agents to invest immediately if p̌0 ≥ p∗2 and never to invest if p̌0 < p∗1.

If p∗1 ≤ p̌0 < p∗2, then it is socially optimal for one agent to invest immediately, and for the second

agent to invest with delay τ s(p̌0) = (φ(p∗2)− φ(p̌0))/γ.

It is noteworthy here that, due to switching costs, staggered investment is optimal for inter-

mediate values of the interim beliefs. Since the initial investment costs required to start a project

cannot be recovered after a failure, it is socially preferable to start only one project initially, which

then generates a flow of information on which the start of the second project can be conditioned.

In this way, staggered investment lowers the loss from making irreversible investments in the bad

state. The cooperative solution shares the feature of staggered investment with the equilibrium

under public information. However, in equilibrium, there is a period of inefficient delay prior to

the initial investment. Moreover, the equilibrium exhibits too little experimentation relative to the

efficient benchmark. On the one hand, since p∗1 < p∗l , there are values of the interim belief at which

experimentation is socially valuable but does not arise in equilibrium. Second, since p∗2 < p∗f , delay

of the second investment is inefficiently long. Inefficiencies arise in equilibrium due to free-riding

incentives: agents benefit from the information generated by their competitor’s experimentation,

and they fail fully to internalize the social value of their own experimentation. The incentive to

free-ride thus leads to inefficiently long delays in investment by the follower, and results in sluggish

initial investment, as each agent prefers the other to invest first.

In comparing the equilibrium outcomes with and without information asymmetries, it is natural

to ask which environment is more desirable from an efficiency standpoint. Näıve logic may suggest

that more transparency should unambiguously lead to better outcomes, as it allows the agents to

make better-informed decisions. This view, however, disregards the aforementioned positive side-

effects of private information. The following result formalizes this insight. It shows that private

information is socially preferable if investment costs are substantial, the prior belief that the state

is good is high enough, and the signals are not too informative. Indeed, denote by W0(s1, s2) the

expected social surplus generated in the unique symmetric equilibrium under public information,

when p0(s1, s2) is the common initial belief that the state is good. Let W̃ denote the ex-ante

expected social surplus generated in a symmetric equilibrium in which each agent’s signal is private

information. We then have the following
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Theorem 4 (Welfare improvement through private information). Fix p0 > p∗l . There exists ρ∗ >

1/2 and Ī ∈ (0, yr ) such that, for all signal precisions ρ ∈ (1/2, ρ∗) and investment costs I ∈ (Ī , yr ),

we have W̃ ≥ E[W0(s1, s2)]. For p∗l < p0 < p∗f , the inequality is strict.

The condition on the signal precision ensures that it is socially optimal for both agents to invest

(it is not necessarily socially optimal for both to invest right away). If p0 ≥ p∗f , there always

exists a range of signal precisions guaranteeing that both types of agents invest immediately under

private information, as in the efficient benchmark. If p∗l < p0 < p∗f , then there are signal precisions

such that the symmetric equilibrium under public information has delayed entry. In this case, the

welfare improvement results from strategic uncertainty and from the informational feedback loop,

described in the previous section, which accelerate learning from actions and diminish strategic

delay.

It is well known that, in the presence of payoff externalities, more information can lead to

socially inferior equilibrium outcomes, as uncertainty will typically relax incentive-compatibility

constraints. Ours, however, is a game with purely informational externalities; in addition, we

purposefully restrict attention to the case of substantial investment costs I, i.e., subsets of the

parameter space that allow us to isolate the effects resulting from information spill-overs.4 Thus,

the welfare gain of private information here ensues from a mechanism that is purely informational

in nature, and the effect differs from the well-known effect with payoff externalities.

5 Conclusion

We propose a tractable model of strategic experimentation with private information and bad-news

learning in the presence of non-negligible switching costs. We derive the unique symmetric equi-

librium in the case of symmetric information. We also construct equilibria for the case of privately

observed signals, which exhibit either immediate or randomly delayed investment. We trace these

properties back to an encouragement-through-signaling effect and to strategic uncertainty resulting

from asymmetric information. Finally, we show that, due to these effects, equilibrium surplus can

be higher with private information.

There are a number of natural extensions we do not address in this paper. For example, we

do not allow communication between agents. However, we conjecture that communication would

not change the equilibrium in our model, since agents would always send the most positive signal

to induce more experimentation by their partner, so that, in equilibrium, all communication would

amount to babbling. We also do not address any questions regarding games with more than two

agents. For public information, we conjecture that an equilibrium with many agents would be

characterized by an increasing sequence of belief thresholds, where each indicates the belief at

which the next investment takes place with certainty. Equilibria with private information will also

4Also see our previous discussion in Section 3.1.
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be affected by encouragement and strategic uncertainty in this case, and we expect that many of the

aspects described in this paper will carry over to a game with more than two players. However, the

welfare implications are ambiguous, because the information aggregation problem becomes more

severe, while the social value of experimentation increases.

6 Proofs

Proof of Lemma 1. (i) That vl is linear in p is obvious from its definition in Equation (2) and

vl is increasing in p because it follows from γc > y > 0 that the second term in Equation (2) is

negative. To see that vl is decreasing in τ , note that λ2 < λ1, and hence

d

dτ
vl(p, τ) = −(r + γ)(1− p)(λ1 − λ2)e−(r+γ)τ (γc− y) < 0

for all p ∈ (0, 1) and τ ≥ 0. That vl is convex in τ for all p ∈ (0, 1) follows from

d2

d2τ
vl(p, τ) = (r + γ)2(1− p)(λ1 − λ2)e−(r+γ)τ (γc− y) > 0.

Finally, supermodularity holds because

d2

dpdτ
vl(p, τ) = (r + γ)(λ1 − λ2)e−(r+γ)τ (γc− y) > 0.

(ii) Linearity of vf in p is obvious from its definition in (3) and it is increasing in p because

γc > y > 0 implies that the first term in Equation (3) is positive and the second term is negative.

For fixed p ∈ (0, 1), the derivative of vf with respect to τ is

d

dτ
vf (p, τ) = −e−rτ

[
rpy − (r + γ)e−γτ (1− p)λ2(cγ − y)

]
+ e−rτrI[rp+ (r + γ)(1− p)e−γτ ].

Let τ̂(p) be the (finite) solution to the first order condition dvf (p, τ)/dτ = 0. The second term in

brackets is positive, so that dvf (p, τ)/dτ > 0 if τ < τ̂(p) and dvf (p, τ)/dτ < 0 if τ > τ̂(p). Hence,

vf attains a global maximum at τ̂(p). If τ̂(p) ≥ 0, then solving

rp(y − rI) + (r + γ)e−γτ̂
∗(p0)(1− p)(λ2(y − cγ)− rI) = 0

for τ̂(p) shows that τ̂(p) = τ∗(p). If τ̂(p) < 0, then vf (p, ·) is strictly decreasing on [0,∞), and

therefore assumes its maximum at 0.

Proof of Lemma 2. Note that for all p < p∗f we have v∗l (p) < vl(p, 0) = vf (p, 0) < v∗f (p) with

equality everywhere when p = p∗f . By definition, we have vl(p, 0) = 0, v∗l (p
∗
l ) = 0. Since vl, vf , v

∗
l ,
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and v∗f are all continuously increasing functions, the first inequality v∗l (p) < vl(p, 0) implies that

p < p∗l . By definition of p∗f , we have v∗f (p∗f ) > 0, and thus the identity v∗l (p
∗
f ) = v∗f (p∗f ) implies that

p∗l < p∗f . Finally, when I → y/r then p→ 1, while p̂∗l < 1 is bounded away from 1. Hence, there is

an I0 < y/r, such that p̂∗l < p.

Lemma 3. In every equilibrium with public signals, each agent invests immediately at any belief

p̌0 ≥ p∗f .

Proof. It is clear that for p̌0 = 1, it is a unique best-response for each agent to invest immediately.

Because of switching costs, there also exists a threshold p†0 ∈ (p∗f , 1) close to one, such that an

agent who is invested at a belief will not exit at any p̌0 ≥ p†0. At a history with posterior belief

p̌0 ≥ p†0 at which exactly one agent is invested, the agent who is out will thus invest immediately.

At a history with posterior belief p̌0 ≥ p†0 at which both agents are out, they anticipate that the

other agent will invest immediately following their own investment, and thus each strictly prefers

to invest immediately. Thus, in any equilibrium, both agents are invested at any belief p̌0 ≥ p†0.

Because of switching costs, there exists an ε ∈ (0, p†0 − p∗f ) such that any history with posterior

belief p̌0 ≥ p†1 := p†0 − ε at which exactly one agent is invested, this agent would not exit. Again,

by definition of p∗f , the agent who is out would thus invest immediately. Again, if both agents are

out, they would then invest immediately. Thus, both agents would invest immediately at any belief

p̌0 ≥ p†1. The same argument applies for any threshold above p∗f so that, in any equilibrium, both

agents invest immediately at any p̌0 ≥ p∗f .

Proof of Theorem 1. (1.) Existence: (i) Let p̌0 ≥ p∗f . The claim immediately follows from the

definition of p∗f .

(ii) Let p∗l ≤ p̌0 < p∗f . If an agent who is invested exits, he receives the payoff v∗l (p̌t) by

construction. By the same argument as in Part (2.) below, it is never optimal for a leader to exit

when p̌0 > p∗l . Before either agent has invested, we have

v∗f (p̌0) > v∗l (p̌0) > 0,

which implies that each agent strictly prefers being the follower over being the leader, and each

prefers being the leader over an outcome in which neither agent ever invests. By symmetry, each

agent has to choose the same distribution over switching times. By standard arguments, the

equilibrium distribution cannot have any atoms or gaps in its support. Thus, the investment rate

β∗(p̌0) from Equation (6) characterizes the distribution that makes each agent indifferent between

investing and not investing, which establishes the claim.

(iii) For p̌0 ≤ p∗l , the claim follows immediately from the definition of p∗l .

(2.) Uniqueness: Consider a history with posterior belief p̌t ∈ [p̂∗l , p
∗
f ), at which exactly one agent,

say agent 1, is invested. By Lemma 3, in any equilibrium, agent 2 invests immediately at any
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s ≥ t at which p̌s ≥ p∗f . Thus, if agent 1 stays invested indefinitely, (or until an accident occurs,)

the largest delay compatible with equilibrium is τ∗(p̌t). The payoff for agent 1 is therefore no less

than v∗l (p̌s) + rI at each s ≥ t. Let (Ik)k∈N0 be an increasing sequence in [0, y/r] with I0 = 0 and

Ik → y/r for k →∞, and let (p̌k0) be a sequence of prior beliefs in (p∗kl , p
∗k
f ), where p∗kl and p∗kf are

the leader and follower thresholds for investment cost Ik for each k. Further, let pk be given by

(8) with I = Ik. Since pk → 1 for k → ∞, we have p∗kl → 1 for k → ∞. Thus, the payoff for the

leader is at least v∗l (p̌
k
0) + rIk → y. On the other hand, the best thing that can happen for agent 1

after exiting is that the other agent invests and never exits. Thus, the highest payoff agent 1 can

achieve after an exit is v∗f (p̌k0) which converges to zero as Ik → y/r. Together it follows that

lim
k→∞

v∗l (p̌
k
0) + rIk − v∗f (p̌k0) = y (9)

which implies that there exists a k†, such that for all k > k†, we have

v∗l (p̌
k
0) + rIk > v∗f (p̌k0).

This inequality implies that a leader cannot gain by exiting at beliefs in the range [p̂∗l , p
∗
f ) if I > I†,

for some I† > 0. From (9), it follows that I† < y/r. Given that the leader does not exit, there

cannot be any p̌t ∈ [p̂∗l , p
∗
f ) at which both agents invest immediately since either agent would prefer

delaying the investment and become a follower. Since there is no equilibrium with simultaneous

investment, in symmetric equilibrium, both agents must choose the same distribution over initial

investment times. Because the continuation strategies are unique, there is a unique investment

rate, given by (21), that has the property that each agent is willing to randomize. Thus, there is

a unique symmetric equilibrium outcome. By Lemma 2, we have p̂∗l < p, for I sufficiently large.

In this case, agents’ expected payoffs from investing are thus negative for p̌0 ≤ p̂∗l . Therefore, in

every equilibrium, both agents refrain from investing/ rescind their respective investment for good

in this range.

Proof of Theorem 2. Part (1.): Suppose p0 > 0 and ρ > 1/2 such that p0(g, g) ≥ p∗f . We

proceed to verify that the following strategies and beliefs are part of an equilibrium. In the first

phase, an agent with signal g invests immediately. An agent with signal b invests immediately with

probability η ∈ [0, 1]. With probability 1−η, he invests at a random time drawn from an exponential

distribution with parameter β∗(p0(b, b)). In the second phase of the game, a follower with posterior

belief p delays investment by τ∗(p), and the beliefs at t are updated via Bayes’ rule whenever

possible. A leader with signal g reverses his investment immediately at t = 0 (and stays out) if

and only if his posterior belief about θ is lower than p̂∗l . Otherwise he stays invested indefinitely. A

leader with signal b reverses his investment immediately at t = 0 with some probability 1−ν ∈ [0, 1].

Either agent who remains invested in the second (or third) phase exits after the occurrence of a

failure. Unless otherwise stated, beliefs after off-path histories are specified as follows: In any phase,
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at time t, the non-deviating agent with signal s assigns probability pt(b, s) to state θ = H. By the

same token, after any off-path exit of agent i, agent −i assigns probability 1 to agent i’s signal

being b. Any off-equilibrium investment of agent i does not affect agent −i belief about agent i’s

signal. The deviating agent’s beliefs do not change as a result of his deviation.

We show that there exist η, ν ∈ (0, 1) such that the above strategies and associated beliefs

characterize a perfect Bayesian equilibrium. Consider first the second phase, taking as given that

each type g invests at t = 0 with probability 1, and each type b invests at t = 0 with probability η

and waits with probability 1 − η. As shown in Lemma 1, the function τ∗(p) is the optimal delay

of the follower with posterior p, and thus given the leader stays in the game, a follower cannot

gain from deviating in the second phase of the game. If the leader exits immediately in the second

phase, the follower cannot influence that decision.

Suppose agent i with signal s invests at time t = 0 in the first phase, and the other agent

−i does not, so that at t = 0 in the second phase, agent i is the leader and −i the follower. If

both expect that the other agent follows the strategy described in the previous paragraph, then

the posterior belief of agent i with signal s is p0(b, s), and the posterior belief of type s of agent −i
is, by Bayes’ rule,

p̃(η, s) =
p0(s)(ρ+ η(1− ρ))

p0(s)(ρ+ η(1− ρ)) + (1− p0(s))(1− (1− η)ρ)
. (10)

If vl(p0(b, b), τ∗(p̃(η, b))) + rI > v∗l (p0(b, b)) + rI > 0, then the continuation payoffs for either

type of agent i is positive (since vl(p0, τ
∗(p̃(ην, b))) > vl(p0(b, b), τ∗(p̃(ην, b))), and both types

of agent i remain invested for sure. If, on the other hand, vl(p0(b, b), τ∗(p̃(η, b))) + rI < 0 <

vl(p0(b, b), τ∗(p0)) + rI, then type b of agent i remains in the game with probability ν∗ ∈ (0, 1)

solving vl(p0(b, b), τ∗(p̃(ην∗, b))) + rI = 0.5 If vl(p0(b, b), τ∗(p0)) + rI < 0, then type b of agent i

exits for sure, and type g remains for sure.

We need to show that there exists a value for η such that neither agent can gain by deviating

from the specified strategies in the first phase. Denote by Vθ(η) the value of investing at t = 0 for an

agent in state θ, and let Wθ(η, τ) be the value of waiting at t = 0 when the agent delays investment

by τ as follower.Note that here τ refers to the delay of the investment, given that the other agent

invests immediately at t = 0. When neither agent invests, then each agent is convinced that the

other agent’s type is bad, so that there is no longer any uncertainty about the other’s private

information, and the unique symmetric equilibrium under public information with p̌0 = p0(b, b) is

played after that history. Note here that when the state and strategies are given, the payoff is

independent of private signals. Note also that for a follower in the second phase, the optimal delay

5Note that p̃(ην∗, b) is the posterior belief of type b of agent −i that the state is H, conditional on the joint event
that agent i invested in the first phase and remains in the second phase, where ην∗ is the probability that type b of
agent i does this.
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for type b is τ∗(p̃(η, b)) when type b of the other agent invests with probability η. We write

E[W ∗θ (η)|s] := max
τ

E[Wθ(η, τ)|s] = E[Wθ(η, τ
∗(p̃(η, s))|s].

for the payoff from waiting when using the optimal delay.

There is a pooling equilibrium, i.e. η = 1, if and only if p0(b) ≥ p∗f , since, in this case, each

type of each agent is willing to invest immediately, if the other agent invests for sure, and thus

reveals no information. Thus, consider the case p0(b) < p∗f . Note that in this case, we have

E[W ∗θ (1)|b] ≥ E[Vθ(1)|b], since bad types always have incentives to wait when the other agent invests

with probability one. There are two cases to consider, E[W ∗θ (0)|b] < E[Vθ(0)|b] and E[W ∗θ (0)|b] ≥
E[Vθ(0)|b].

(i.) Suppose E[W ∗θ (0)|b] < E[Vθ(0)|b], i.e., an agent with a bad signal prefers to invest immediately

in the first phase at time zero, if the other agent invests with zero probability after a bad

signal and invests immediately after a good signal. In this case, there exists a partial (or

full) pooling equilibrium in which type g always invests while type b invests with probability

η∗ ∈ (0, 1]. Note that the functions E[W ∗θ (η)|b] and E[Vθ(η)|b] are convex combinations

of continuous functions and hence continuous. Thus, there exists an η∗ ∈ (0, 1] such that

E[Vθ(η
∗) −W ∗θ (η∗)|b] = 0, so that an agent with type b is indifferent between investing and

not investing, given the other agent invests with probability η∗ after observing signal b. We

shall now verify an agent of type g’s incentives to invest. Note that we have the following

inequality:

0 = E[Vθ(η
∗)−W ∗θ (η∗)|b] ≤ E[Vθ(η

∗)−Wθ(η
∗, τ∗(p̃(η∗, g)))|b]

= p0(b)
(
VH(η∗)−WH(η∗, τ∗(p̃(η∗, g))

)
+ (1− p0(b))

(
VL(η∗)−WL(η∗, τ∗(p̃(η∗, g)))

)
≤ p0(g)

(
VH(η∗)−WH(η∗, τ∗(p̃(η∗, g))

)
+ (1− p0(g))

(
VL(η∗)−WL(η∗, τ∗(p̃(η∗, g)))

)
= E[Vθ(η

∗)−W ∗θ (η∗)|g],

where the first inequality follows from the fact that E[W ∗θ (η∗)|b] ≥ E[Wθ(η
∗, τ)|b] for all τ ≥ 0

by definition, and the second inequality from p0(g) > p0(b), and from the fact that investing

immediately is strictly better than waiting if and only if the state is H (since there is no gain

from delay in state H, and no gain from investing in state L).

(ii.) Now, suppose E[W ∗θ (0)|b] ≥ E[Vθ(0)|b], so that agents with signal b prefer to wait if the other

agent invests only if his signal is g. For agents with signal g in this case we have

E[Vθ(0)−Wθ(0)|g] = q0(g)
(
vl(p0(g, g), 0)− v∗f (p0(g, g))

)
+ (1− q0(g))

(
0 ∨ v∗l (p0)− 0 ∨ vl(p0, τ

∗(p0(b, b))
)
.

21



Since p0(g, g) ≥ p∗f by assumption, we have vl(p0(g, g), 0)−v∗f (p0(g, g)) = 0, and thus E[Vθ(0)−
Wθ(0)|g] ≥ 0. Thus, in this case, we have a fully separating equilibrium in which g-types

invest at t = 0, whereas b-types do not.

It remains to be shown that, in both cases (i.) and (ii.), if agent i has incentives to invest at

time t = 0, then he has no incentive subsequently to exit, provided I is large enough. Similarly

to the proof of Theorem 1, let (Ik)k∈N0 be an increasing sequence in [0, y/r] with I0 = 0 and

Ik → y/r for k → ∞, and let (pk0, ρ
k) be a sequence of information structures with p∗kl < pk0 <

p∗kf < pk0(g, g), where p∗kl and p∗kf are, respectively, the leader and follower thresholds for investment

costs Ik, such that either E[W ∗kθ (0)|b] < E[V k
θ (η)|b] or E[W ∗kθ (0)|b] ≥ E[V k

θ (η)|b] for all k ≥ 0, where

W ∗kθ (η), V k
θ (η) denote the follower and leader value for each k (as above). Moreover, let p̃k(η, b)

be the posterior belief given by (10) at step k, and let ηk ∈ [0, 1] be the critical value with the

property that (1) for p0(b) < p∗kf , either type b of each agent is indifferent or else ηk = 0, and (2)

for p0(b) ≥ p∗kf , we have ηk = 1. Finally, let pk be given by (8) with I = Ik. Note that, if si = b,

our assumption that i has incentives to invest at time t = 0 implies p̃k(ηk, b) ≥ pk for all k. If

si = g, our assumption in the statement of the theorem implies that i’s belief after any history is

bounded below by p0 ≥ p∗kl ≥ pk.

(i.) Both agents invested. Note that p̃k(ηk, b) → 1 as pk → 1, for k → ∞. Thus, the payoff of

remaining invested, for either type of agent, is at least v∗l (p̃
k(ηk, b), 0) + rIk → y. On the

other hand, the best thing that could happen to an agent after exiting would be for the other

agent to reveal his type, to invest and never to exit. Thus, the highest payoff either type

of agent i could possibly achieve after an exit is E[v∗f (pk0(s−i, g)] which converges to zero as

Ik → y/r. Together it follows that

lim
k→∞

v∗l (p̃
k(ηk, b), 0) + rIk − E[v∗f (pk0(s−i, g)] = y (11)

which implies that there exists a k̃1, such that for all k > k̃1, we have

v∗l (p̃
k(ηk, b), 0) + rIk > E[v∗f (pk0(s−i, g)].

This inequality implies that there exists a threshold Ĩ1 such that a leader of either type cannot

gain by exiting if I > Ĩ1. From (11), it follows that Ĩ1 < y/r.

(ii.) Only one agent invested. First, we argue that type b of each agent i remains invested if he

invests himself and his payoff as leader is positive, i.e., if pk0(b, b) > p̂∗kl . If pk0(b, b) ∈ [p̂∗kl , p
∗k
l ),

then exit is clearly not optimal, since after i’s exit, agent −i (whose type has become known

to be b after he did not invest) will never invest going forward. Thus assume pk0(b, b) ≥ p∗kl .

Then v∗l (p
k
0(b, b))+rIk ≥ v∗l (p∗kl )+rIk. Since pk → 1 for k →∞, it follows from pk0(b, b) ≥ pk

that pk0(b, b) → 1 for k → ∞, and therefore, v∗l (p
k
0(b, b)) + rIk → y. On the other hand, the
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best thing that could happen for agent i after exiting is that the other agent invests and

never exits. Thus, the highest payoff agent i can achieve after an exit is at most v∗f (pkt (b, b))

which converges to zero as Ik → y/r. Together it follows that

lim
k→∞

v∗l (p
k
t (b, b)) + rIk − v∗f (p̃k(ηk, b)) = y (12)

which implies that there exists a k̃0, such that for all k > k̃0, we have

v∗l (p
k
0(b, b)) + rIk > v∗f (p̃k(ηk, b)).

This inequality implies that there exists a threshold Ĩ0 such that a leader cannot gain by

exiting if I > Ĩ0. From (12), it follows that Ĩ0 < y/r.

Part (2.): Consider symmetric strategies with the following properties. Each agent with signal

g invests with probability ν, and each agent with signal b waits indefinitely in the first phase. If

p0 ≥ p̂∗l , an agent who invested at t = 0 always remains invested until an accident occurs; if p0 < p̂∗l ,

an agent i who invested at t = 0 in the first phase rescinds his investment at t = 0 in the third

phase if and only if −i did not invest in the second phase at t = 0. If agent i invests immediately,

then agent −i invests without delay if his signal is g. If agent −i’s signal is b, then he delays his

investment by τ∗(p0). Agents never invests after any other history. Each agent with signal g is

indifferent between investing and delaying his investment if

q0(g)vl(p0(g, g), 0) + (1− q0(g))(max{v∗l (p0) + rI, 0} − rI) = νq0(g)vf (p0(g, g), 0).

which is equivalent to

ν∗ = 1 +

(
1− q0(g)

q0(g)

)(
max{v∗l (p0) + rI, 0} − rI

vf (p0(g, g), 0)

)
(13)

When agent i with signal g invests, his continuation strategy is optimal by construction. To show

that it is optimal for agents with signal b to wait, denote by Vθ(η) the value of investing at t = 0

for an agent in state θ, and let Wθ(η, τ) be the value of waiting at t = 0 when the agent delays

investment by τ as follower. By construction of ν∗ and τ∗, we have

0 = E[Vθ(ν
∗)−W ∗θ (ν∗)|g]

= p0(g)
(
VH(ν∗)−WH(ν∗, τ∗(p0(g, g)))

)
+ (1− p0(g))

(
VL(ν∗)−WL(ν∗, τ∗(p0(g, g)))

)
≥ p0(b)

(
VH(ν∗)−WH(ν∗, τ∗(p0(g, g)))

)
+ (1− p0(b))

(
VL(ν∗)−WL(ν∗, τ∗(p0(g, g)))

)
= E[Vθ(ν

∗)−Wθ(ν
∗, τ∗(p0(g, g)))|b]

≥ E[Vθ(ν
∗)−W ∗θ (ν∗)|b].
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Thus, for an agent with signal b, it is a best response to wait. A similar argument to before

establishes that it is never optimal for an agent who invested to exit.

Part (3.): Suppose p0 > 0 and ρ ∈ (1/2, 1) are such that p0(g, g) < p∗f . The strategies outlined

in the theorem imply that an agent who invests in the first phase and becomes the leader reveals

himself to be of type g. Suppose that after agent i invests at time t in the first phase, the agents

use the following continuation strategy:

• Agent −i with signal g invests at time t+ ∆, where ∆ = τ∗(p0(g, g)).

• If v∗l (pt+∆) + rI ≥ 0, where

pt+∆ =
p0

p0 + (1− p0)e−γ∆
,

then type g of agent i remains in the game indefinitely, and each type s of agent −i invests

with delay τ∗(p0(s, g))

• If v∗l (pt+∆) + rI < 0 < vl(pt+∆, 0), then type g of agent i remains for sure until t + ∆ and

type g of the follower enters after delay ∆. Beginning at time t+∆, type b of agent −i invests

at rate φf (s) solving

0 = y − (1− ps)γc+ φf (s)(vl(ps, 0) + rI)

and agent i exits at rate φl(s) solving

vl(ps, 0) = (1− rdt− (1− p)γdt− φl(s)dt)vl(ps+dt, 0).

The exit and investment rates φl, φf are defined in a way that the leader and follower are

willing to randomize. Note that since delay is profitable for the follower for all p < p∗f , we

have

vl(ps, 0) < (1− rdt− γdt)vl(ps+dt, 0).

and thus φl > 0.

• If vl(pt+∆, 0) + rI, vl(pt+∆, 0) < 0, then type g of agent i remains in until t + ∆ if agent −i
invests with delay ∆, and agent i exits otherwise. Type g of agent −i invests with delay ∆,

and type b of agent −i never invests.

If agent i with signal g, who invested at some time t < t∗, deviates by exiting, we assume that agent

−i delays investment indefinitely while both agents are out, yet ignores the deviation completely as

soon as agent i re-enters, making it a best response for the deviating agent to re-invest immediately

upon exiting (since it was optimal for him to enter in the first place). Given agent i re-invests

immediately, it is a best response for agent −i to stay out.6

(i) Derivation of the equilibrium investment rate of agents with signal g. Henceforth, for each

6Note that, since the follower and the leader have divergent beliefs at a history with a single investment, our
definition of symmetry imposes no restrictions after such histories.

24



of the three cases above, denote by Vθ(si, s−i) the value of agent i conditional on (1) state θ and

(2) agent i with signal si being the leader, and agent −i with signal s−i using the assigned follower

strategy. Similarly, let Wθ(si, s−i) be the value of becoming the follower. Note that these payoffs

are independent of time in the first phase, since the signal pair (si, s−i) encapsulates all information

that is exchanged in the first phase, so that pt(si, s−i) = p0(si, s−i). Thus, each agent’s expected

value of becoming the leader is given by

U(qt(g)) = qt(g)E[Vθ(g, g)|si = g, s−i = g] + (1− qt(g))E[Vθ(g, b))|si = g, s−i = b].

Type g of each agent is willing to randomize if he is indifferent between investing immediately and

waiting for another instant. Hence, the value function for type g of the agent must satisfy the

indifference condition

U(qt(g)) = µtqt(g)E[Wθ(g, g)|si = g, s−i = g]dt+ (1− rdt− µtqt(g)dt)U(qt+dt(g)). (14)

By Ito’s Lemma, the indifference condition (14) can be written as

U(qt+dt(g)) = U(qt(g)) + dU(qt(g))dqt(g), (15)

where by definition of U , we have dU(qt(g))/dqt(g) = E[Vθ(g, g)]− E[Vθ(g, b)]. Bayes’ rule implies

that the posterior belief at t+ dt is

qt+dt(g) =
qt(g)(1− µtdt)
1− qt(g)µtdt

.

The differential change in belief is therefore

dqt(g)

dt
≡ lim

dt→0

qt+dt(g)− qt(g)

dt
= −µtqt(g)(1− qt(g)). (16)

If we now substitute equations (15) and (16) in the indifference condition (14) and ignore higher

order terms, we obtain the expression

rU(qt(g)) = µtqt(g)E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]. (17)

Since p0(g, g) < p∗f , the right-hand side of this equation is strictly positive. Simplifying and solving

the equation for µt yields

µt =
rU(qt(g))

qt(g)E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]
. (18)

Here, µt is the rate of investment for type g of each agent in the symmetric equilibrium at a given
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belief qt(g). Note that since p0(g, g) < p∗f , we have Wθ(g, g) > Vθ(g, g), and thus µt ∈ [0,∞). (If

p0(g, g) ≥ p∗f , then Wθ(g, g) ≤ Vθ(g, g), and an equilibrium of the type constructed here does not

exist.) Substituting this last expression into Equation (16), we obtain the evolution of the posterior

qt(g) in equilibrium:

dqt(g) = −(1− qt(g))
rU(qt(g))

E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]
dt. (19)

We obtain the equilibrium belief and equilibrium investment rate at each time t by solving Equa-

tion (19) with given initial belief q0. The initial value problem (19) has the unique solution

qt(g) =
e−tβ

∗(p0(g,g))U(q0(g)) + (1− q0(g))E[Vθ(g, b)]

e−tβ∗(p0(g,g))U(q0(g))− (1− q0(g))E [Vθ(g, g)− Vθ(g, b)|si = g]
. (20)

We now substitute qt(g) into Equation (18) and simplify to obtain the equilibrium rate of investment

µ∗t =
e−tβ

∗(p0(g,g))U(q0(g))

e−tβ∗(p0(g,g))U(q0(g)) + (1− q0)E[Vθ(g, b)|si = g]
β∗(p0(g, g)). (21)

If rE[Vθ(g, b)] > 0 then the investment rate µ∗t diverges to +∞ as t→ t∗, where

t∗ = log

(
1 +

p0(g, g)

p0

E[Vθ(g, g)]

E[Vθ(g, b)]

)β∗(p0(g,g))

. (22)

If, on the other hand, E[Vθ(g, b)] < 0, then µ∗t converges to 0 as t→∞. Thus, t∗ =∞.

(ii) Agents with signal b prefer to wait until t∗. For agents with signal b, the incremental

opportunity cost from waiting is E[Vθ(b, s)|si = b]dt. The expected incremental gain from waiting

for this type is µ∗t qt(b)E[Wθ(b, g)−Vθ(b, g)|si = b]dt. We show that when agents with signal g invest

at rate µ∗t , then agents with signal b prefer to wait:

rE[Vθ(b, s)|si = b] ≤ µ∗t qt(b)E[Wθ(b, g)− Vθ(b, g)|si = b, s−i = g]. (23)

Because flow values are positive in state H and negative in state L, i.e., y ≥ 0 ≥ y − γc, we have

VH(si, s−i) ≥ 0 ≥ VL(si, s−i). Therefore:

Et[Vθ(si, s−i)|si = b] = pt(b)Et[VH(si, s−i)|si = b] + (1− pt(b))Et[VL(si, s−i)|si = b]

≤ pt(g)Et[VH(si, s−i)|si = b] + (1− pt(g))Et[VL(si, s−i)|si = b]

≤ pt(g)Et[VH(b, s−i)|si = g] + (1− pt(g))Et[VL(b, s−i)|si = g]

≤ pt(g)Et[VH(g, s−i)|si = g] + (1− pt(g))Et[VL(g, s−i)|si = g]

= Et[Vθ(si, s−i)|si = g].
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The first inequality follows because pt(g) > pt(b). Note that according to our prescribed strategies,

agents with signal g invest earlier than agents with signal b, and exit later. Therefore, we have

Vθ(si, g) ≥ Vθ(si, b). Since qt(g) > qt(b), we thus have Et[Vθ(b, s−i)|si = g] ≥ Et[Vθ(b, s−i)|si = b]

for each θ, which explains the second inequality. The last inequality follows because the strategy

of type g is constructed to maximize the continuation payoff after investing. Note that

1

qt(si)
E[Vθ(si, s−i)|si] =

pt(si)

qt(si)
E[VH(si, s−i)|si] +

1− pt(si)
qt(si)

E[VL(si, s−i)|si]

Because ρ > 1/2 and pt(g) > pt(b), it follows that

pt(b)

qt(b)
=

pt(b)

ρpt(b) + (1− ρ)(1− pt(b))
<

pt(g)

ρpt(g) + (1− ρ)(1− pt(g))
=
pt(g)

qt(g)

and similarly,
1− pt(b)
qt(b)

>
1− pt(g)

qt(g)

Combining the previous results, we find that

1

qt(b)
E[Vθ(si, s−i)|si = b] =

pt(b)

qt(b)
E[VH(si, s−i)|si = b] +

1− pt(b)
qt(b)

E[VL(si, s−i)|si = b]

≤ pt(g)

qt(g)
E[VH(si, s−i)|si = b] +

1− pt(g)

qt(g)
E[VL(si, s−i)|si = b]

≤ pt(g)

qt(g)
E[VH(si, s−i)|si = g] +

1− pt(g)

qt(g)
E[VL(si, s−i)|si = g]

=
1

qt(g)
E[Vθ(si, s−i)|si = g]

The previous inequalities, together with (17), imply

1

qt(b)
rE[Vθ(si, s−i)|si = b] ≤ 1

qt(g)
rE[Vθ(si, s−i)|si = g] (24)

= µ∗tE[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]. (25)

(iii) No exit before failure. If neither agent has invested at time t > t∗, then it is common knowledge

that both agents have observed bad signals, and thus there is a unique symmetric continuation

equilibrium in this case. Suppose agent i invests at t < t∗ and subsequently deviates by exiting.

As before, we assume that, after such a history, the non-deviating agent stays out forever while

both agents are out, and ignores the deviation as soon as the deviator re-enters, making it a best

response for the deviating agent immediately to re-invest. This in turn makes it a best response

for the first agent to stay out.

Proof of Theorem 3. It is obvious that, prior to an accident, it can never be optimal for either
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agent to switch more than once. The team’s objective can therefore be written as

w(p, τ) = max {0, vl(p, τ) + vf (p, τ)} ,

where τ denotes the delay with which the follower invests. Using Equations (2) and (3), we can

write explicitly:

w(p, τ) = (1 + e−rτ )py + (1− p)
[
λ1 + (2λ2 − λ1)e−(r+γ)τ

]
(y − γc)− (1 + (p+ (1− p)e−(r+γ)τ ))rI.

It follows from the definitions of λ1 and λ2 that 2λ2 − λ1 = λ1λ2. Therefore, the marginal value of

delaying the second investment is

∂w(p, τ)

∂τ
= re−rτ [−p(y − rI) + (1− p)(λ2(γc− y) + (r + γ)I)e−γτ ]. (26)

The expression in brackets is strictly decreasing in τ . This implies that ∂w(p, τ)/∂τ < 0 for all

τ ≥ 0 whenever p > p∗2, where

p∗2 =
rI + γI + λ2(γc− y)

y + γI + λ2(γc− y)
, (27)

in which case it is socially optimal to make the second investment immediately. If p ≤ p∗2, then the

socially optimal delay solves the first-order condition dw(p, τ)/dτ = 0. Thus, the optimal delay is

given by

τ s(p) =

(φ(p∗2)− φ(p))/γ if p < p∗1,

0 if p ≥ p∗1.

Define ws(p) = w(p, τ s(p)). By Lemma 1, the functions vl and vf are increasing in p which implies

that ws is an increasing function. Since ws is continuous with ws(0) < 0 and ws(1) > 0, it follows

that there exists a unique threshold p∗1 that solves ws(p∗1) = 0.

Proof of Theorem 4. Let P be the distribution over signals for given parameters p0 and ρ. We

write P (si) for the probability that a given agent’s signal is si and P (s1, s2) for the probability

that the pair of signals is (s1, s2).

(1.) Suppose p0 > p∗f . Then, choose ρ∗ > 1/2 such that p0(b) > p∗f and p0(b, b) > p∗2. As we show

in the proof of Theorem 2, it follows that for all ρ < ρ∗, there exists a pooling equilibrium

in which each type of each agent invests immediately. By Theorem 3, this equilibrium is

efficient. Hence W̃ ≥ E[Wθ(s1, s2)].

(2.) Let p∗f > p0 > p∗l . Choose ρ∗ > 1/2 such that p∗f > p0(g, g) and p0(b, b) ≥ p∗l . By The-

orem 2, there exists an equilibrium with delayed entry. It follows from arguments in the

proof of Theorem 2 that the expected equilibrium value of the good type of each agent is
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E[Vθ(g, s−i)] ≥ E[v∗l |g]. The inequality follows from the fact that leaders have the option to

exit. By Equation (23), bad types strictly prefer to delay investment at each t < t∗. The

expected payoff for an agent of type b who deviates by investing before time t∗ is bounded

below by

qt(b)vl(p0, τ
∗(p0(g, g))) + (1− qt(b))v∗l (p0(b, b), τ∗(p0)) > E[v∗l |b].

Therefore, the expected social surplus for each agent is

W̃ > P (g)E[v∗l |g] + P (b)E[v∗l |b] = E[Wθ(s
1, s2)].

(3.) Let p0 = p∗f . Since p0(g, g) > p∗f , each agent with signal g invests immediately. We show that

there exists ρ∗ > 1/2 such that W̃ > E[Wθ(s1, s2)] for all ρ ∈ (1/2, ρ∗). The equilibrium is

with immediate investment, since p0(g, g) > p∗f . There cannot be a pooling eqilibrium, since

p0(b) < p0 = p∗f .

The social welfare per agent therefore satisfies the inequality

W̃ ≥ P (g)
[
q0(g)vl(p0(g, g), 0) + (1− q0(g))(ηvl(p0, 0) + (1− η)vl(p0, τ

∗(p̃η(b)))
]

+ P (b)
[
q0(b)vl(p0, 0) + (1− q0(b))(ηvl(p0(b, b), 0) + (1− η)(vl(p0(b, b), τ∗(pη(b)))

]
.

The right-hand side represents the ex-ante expected payoff for an agent who invests im-

mediately after each signal, which is a lower bound for the equilibrium payoff. Note that

P (g)q0(g) = P (g, g), P (g)(1 − q0(g)) = P (b)q0(b) = P (b, g) and P (b)(1 − q0(b)) = P (b, b).

Using q0(b)p0 + (1− q0(b))p0(b, b) = p0(b) together with the linearity of vl(p, 0), we can write

W̃ ≥ P (g, g)vl(p0(g, g), 0) + P (b, g)vl(p0, 0)

+ (P (g, b) + P (b, b))
[
ηvl(p0(b), 0) + (1− η)vl(p0(b), τ∗(p̃(η, b))

]
.

When signals are public, then, after each realized pair of signals resulting in the posterior

belief p̌0, each agent’s equilibrium payoff is v∗l (p̌0) (when ρ∗ is chosen so that p0(b, b) > p∗l for

all ρ ∈ (1/2, ρ∗). Thus, the expected welfare under public information can be written as

E[Wθ(s1, s2)] = P (g, g)v∗l (p0(g, g)) + P (b, g)v∗l (p0)

+ (P (g, b) + P (b, b))
[
q0(b)v∗l (p0) + (1− q0(b))v∗l (p0(b, b))

]
. (28)

Using the definition of τ∗ in Lemma 1, we have

v∗l (p) = vl(p, τ
∗(p)) = py + (1− p)λ1(y − γc) + (1− p)e−(r+γ)τ∗(p)(λ2 − λ1)(y − γc)− rI.
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Since p0 = p∗f , we have τ∗(p0) = τ∗(p0(g, g)) = 0. We have that W̃ > E[Wθ(s1, s2)] if

ηvl(p0(b), 0)+(1−η)vl(p0(b), τ∗(p̃(η, b)) > q0(b)vl(p0, 0)+(1−q0(b))v∗l (p0(b, b))). (29)

We define ψ(p) := p
1−p = eφ(p) and α := r+γ

γ > 1. Then, the left-hand side of Inequality (29)

can be written as

ηvl(p0(b), 0) + (1− η)vl(p0(b), τ∗(p̃(η, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+ (1− p0(b))

[
η + (1− η)ψ(p̃(η, b))αψ(p∗f )−α

]
(λ2 − λ1)(y − γc)− rI (30)

From Bayes’ rule and the definition of ψ, we have

ψ(p0(b)) =
p0

1− p0

1− ρ
ρ

= ψ(p0)/ψ(ρ), ψ(p̃(η, b)) = ψ(p0(b))

(
ρ+ (1− ρ)η

1− ρ+ ρη

)
.

If we now use the previous equalities to factor out ψ(p0(b))αψ(p∗f )−α from the square brackets

in (30), we obtain

ηvl(p0(b), 0) + (1− η)vl(p0(b), τ∗(p̃(η, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+ (1− p0(b))ψ(p0(b))αψ(p∗f )−α

[
ηψ(ρ)α + (1− η)

(
ρ+ (1− ρ)η

1− ρ+ ρη

)α ]
(λ2− λ1)(y− γc)− rI.

(31)

The right-hand side of Inequality (29) is given by

q0(b)vl(p0, 0)+(1− q0(b))v∗l (p0(b, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+

[
q0(b)(1− p0) + (1− q0(b))(1− p0(b, b))ψ(p0(b, b))αψ(p∗f )−α

]
(λ2 − λ1)(y − γc)− rI.

(32)

From Bayes’ rule it follows that

q0(b)

1− p0(b)
=
p0(b)ρ+ (1− p0(b))(1− ρ)

1− p0(b)
=

(
p0

1− p0

1− ρ
ρ

)
ρ+ (1− ρ) =

1− ρ
1− p0

,

1− q0(b)

1− p0(b)
=
p0(b)(1− ρ) + (1− p0(b))ρ

1− p0(b)
=

(
p0

1− p0

1− ρ
ρ

)
(1− ρ) + ρ =

ρ

1− p0(b, b)
.
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Using these equalities together with the identity

ψ(p0(b, b)) =
p0(b)

1− p0(b)

1− ρ
ρ

= ψ(p0(b))ψ(1− ρ)

to factor out (1− p0(b))ψ(p0(b))αψ(p∗f )−α from the square brackets in (32), we obtain

q0(b)vl(p0, 0) + (1− q0(b))v∗l (p0(b, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+ (1− p0(b))ψ(p0(b))αψ(p∗f )−α

[
(1− ρ)ψ(ρ)α + ρψ(ρ)−α

]
(λ2 − λ1)(y − γc)− rI.

Define the functions,

h(η, ρ) := ηψ(ρ)α + (1− η)

(
ρ+ (1− ρ)η

1− ρ+ ρη

)α
, g(ρ) := (1− ρ)ψ(ρ)α + ρψ(ρ)−α.

Condition (29) is thus equivalent to infη h(η, ρ) > g(ρ). One calculates that the partial

derivative of h at ρ = 1/2 is limρ→1/2 ∂ρh(η, ρ) = 4α
(
2η2 − η + 1

)
/(η + 1). The function

limρ→1/2 ∂ρh(η, ρ) has its minimum in η at
√

2 − 1 and is thus larger than 4
(
4
√

2− 5
)
> 0.

On the other hand, g′(1/2) = 0. Thus, there exists a ρ∗ > 1/2 such that for all ρ ∈ (1/2, ρ∗),

we have W̃ > E[Wθ(s1, s2)].
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