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Abstract

We examine a two-player game with two-armed exponential bandits, where players operate

different technologies for exploring the risky option. We characterise the set of Markov perfect

equilibria (MPE), and show that there always exists an equilibrium in which the weaker player

uses a cutoff strategy. If the degree of asymmetry between the players is high enough, there

exists an MPE in cutoff strategies, which is welfare-maximising whenever it exists.
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1 Introduction

In many instances, the information produced by one agent is interesting to other agents as well.
Think e.g. of firms exploring neighbouring oil patches: If one firm strikes oil, chances are there
will be oil in its neighbour’s patch as well. Such games of purely informational externalities
have been analysed by the strategic bandit literature,1 which so far has only analysed the case of
homogeneous agents. However, in many instances, one of the oil firms, for example, might be
a big multinational firm that has access to a superior drilling technology. In this article, we aim
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the Social Sciences and Humanities Research Council of Canada. Part of the results presented in this paper were al-
ready contained in the third author’s undergraduate thesis, entitled “Strategisches Experimentieren mit asymmetrischen
Spielern,” which she submitted at the University of Munich in 2009 under her maiden name Tönjes.
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1The first paper to do so was Bolton and Harris (1999). Keller, Rady, Cripps (2005) have introduced exponential

bandits, which we shall use here.
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to analyse the impact of asymmetries in players’ exploration technologies in a game of strategic
experimentation with two-armed exponential bandits.

Specifically, players’ bandits have a safe arm that generates a known positive flow payoff, and a
risky arm that can either be good or bad. If it is bad, it does not generate any payoffs. If it is good, it
generates a better expected flow payoff than the safe arm. The payoffs of the good risky arm arrive
as lump sums realised at random times, which are exponentially distributed. Initially, players do
not know if their risky arm is good or bad; they share a common prior belief about it. When the
risky arm is used without a lump sum arriving, players continuously grow more pessimistic about
its quality. As the type of the risky arm is assumed to be the same for both players, and players’
actions and their outcomes are perfectly publicly observable, players also learn about their own
risky arm from their partner’s experimentation. There thus arises an informational externality,
although there are no direct payoff externalities between the players.

The seminal paper by Keller, Rady, Cripps (2005) analyses this problem with homogeneous
players. In the current paper, we generalise the analysis by introducing asymmetric players, in the
sense that their payoff arrival rates from a good risky arm differ. This implies that, given the risky
arm is good, the expected time needed to learn this differs between the players. As actions and
outcomes are perfectly publicly observable, and players start out with a common prior, they will
always have a common posterior belief. We characterise the set of Markov perfect equilibria with
the players’ common posterior belief as the state variable for all ranges of asymmetry between
the players. If the degree of asymmetry between the players is sufficiently high, there exists an
equilibrium in cutoff strategies, i.e. where both players use a cutoff strategy. That is, either player
uses the risky arm if and only if the likelihood he attributes to the option being good is greater
than a certain threshold. This equilibrium is unique in the class of equilibria in cutoff strategies.
Whenever only one of the players experiments and the other free rides in this equilibrium, it is
always the player with the weaker technology who free rides. In the case of homogeneous players
(Keller, Rady, Cripps (2005)), by contrast, there never exists an equilibrium in cutoff strategies,
and players swap the roles of pioneer and free-rider at least once in any equilibrium. In our setting,
aggregate payoffs in the equilibrium in cutoff strategies are higher than in any other equilibrium. If
the degree of asymmetry is low, at least one player uses a non-cutoff strategy in any equilibrium. In
contrast to the homogeneous case (Keller, Rady, Cripps (2005)), we furthermore show that more
frequent switches of arms do not unambiguously improve the equilibrium welfare with asymmetric
players.

This paper contributes to the literature on strategic experimentation with bandits, a problem
studied quite widely in economics, amongst others, by Keller and Rady (2010), Klein and Rady
(2011) and Thomas (2017). In all of these papers, players are homogeneous. Except in Thomas
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(2017) and Klein and Rady (2011), players’ bandits are of the same type and free-riding is a
common feature in all the above models except for Thomas (2017). Many variants of this problem
have been studied in the literature. Rosenberg, Salomon, Vieille (2013) and Murto and Välimäki
(2011), for instance, assume that switches to the safe arm are irreversible and that experimentation
outcomes are private information, while Bonatti and Hörner (2011) and Heidhues, Rady, Strack
(2015) investigate the case of private actions. Rosenberg, Solan, Vieille (2007) analyse the role of
the observability of outcomes and the correlation between risky-arm types in a setting in which a
switch to the safe arm is irreversible. Besanko and Wu (2013) use the Keller, Rady, Cripps (2005)
framework to study how an R & D race is impacted by market structure. The paper closest to the
present paper is Keller, Rady, Cripps (2005), who find that, with homogeneous players, there is
never an equilibrium in cutoff strategies. By contrast, we show that, with heterogeneous players,
an equilibrium in cutoff strategies may exist, and that it is welfare-maximising whenever it exists.

The rest of the paper is organised as follows. Section 2 sets out the model. Section 3 discusses
the social planner’s solution. A detailed analysis of equilibria for different ranges of heterogeneity
is undertaken in Section 4. Finally, Section 5 concludes. Payoff functions are shown in Appendix
A, while some proofs are relegated to the Appendix B.

2 Two armed bandit model with heterogeneous players

There are two players (1 and 2), each of whom faces a two-armed bandit in continuous time. One
of the arms is safe, in that a player who uses it gets a flow payoff of s > 0. The risky arm can be
either good or bad. Both players’ risky arms are of the same type. If the risky arm is good, then
a player using it receives a lump sum, drawn from a time-invariant distribution with mean h > s,
at the jumping times of a Poisson process. The Poisson process governing player 1’s arrivals has
intensity λ1 = 1, while player 2’s arrive according to a Poisson process with intensity λ2 ∈ ( s

h ,1).
Thus, a good risky arm gives player 1 (2) an expected payoff flow of g1 = λ1h = h (g2 = λ2h), with
g1 > g2 > s. The parameters and the game are common knowledge.

The uncertainty in this model arises from the fact that players do not initially know whether
their risky arms are good or bad. Players start with a common prior belief p0 ∈ (0,1) that their risky
arms are good. Players have to decide in continuous time whether to choose the safe arm or the
risky arm. At each instant, players can choose only one arm. We write ki,t = 1 (ki,t = 0) if player
i ∈ {1,2} uses his risky (safe) arm at instant t ≥ 0. Players’ actions and outcomes are publicly
observable and, based on these, they update their beliefs. Players discount the future according to
the common discount rate r > 0.

Let pt be the players’ common belief that their risky arms are good at time t ≥ 0. Given player
i’s (i ∈ {1,2}) actions {ki,t}t≥0, which are required to be progressively measurable with respect
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to the available information and to satisfy ki(t) ∈ {0,1} for all t ≥ 0, player i’s expected payoff is
given by

E
[∫ ∞

0
re−rt [(1− ki,t)s+ ki,t ptgi]dt

]
,

where the expectation is taken with respect to the processes {ki,t}t≥0 and {pt}t≥0. As can be
seen from the objective function, there are no payoff externalities between the players. Indeed,
the presence of the other player impacts a given player’s payoffs only via the information that he
generates, i.e. via the belief.

As mentioned in the Introduction, we will focus our analysis on Markov perfect equilibria with
the players’ common posterior belief as the state variable. Formally, a Markov strategy of player
i is any left-continuous function ki : [0,1] → {0,1}, p 7→ ki(p) (i = 1,2) that is also piecewise
continuous, i.e. continuous at all but a finite number of points.

As only a good risky arm can yield positive payoffs in the form of lump sums, the arrival of a
lump sum fully reveals the risky arm to be good. Hence, if either player receives a lump sum at a
time τ ≥ 0, then pt = 1 for all t > τ . In the absence of a lump-sum arrival, the belief follows the
following law of motion for a.a. t:

d pt =−(k1,t +λ2k2,t)pt(1− pt)dt.

3 Planner’s Problem

Suppose there is a benevolent social planner, who controls the actions of both players and wants to
maximise the sum of their payoffs. By standard arguments, it is without loss of generality for the
planner to restrict himself to Markov strategies (k1(pt),k2(pt)) with the posterior belief pt as the
state variable. The Bellman equation for the planner’s problem is given by

v(p) = 2s+ max
k1,k2∈{0,1}

{
k1[B1(p,v)− c1(p)]+ k2[B2(p,v)− c2(p)]

}
, (1)

where we write v(p) for the planner’s value function, and, like Keller, Rady, Cripps (2005), define
the myopic opportunity cost of having player i play risky , ci(p) = s− pgi, and the corresponding
learning benefit

Bi(p,v) = p
λi

r
{(g1 +g2)− v(p)− v

′
(p)(1− p)}.

Note that the planner’s Bellman equation is linear in both k1 and k2, so that our restriction to
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action plans {(k1,t ,k2,t)}t≥0 with ki,t ∈ {0,1} for all (i, t) is without loss in the planner’s problem.
To state the following proposition, which describes the planner’s solution, we define g = g1 +g2,
λ = 1+λ2, µ = r

λ , u1(p) := (1− p)
(

1−p
p

)r
, u0(p) := (1− p)

(
1−p

p

)µ
.

Proposition 1 The planner’s optimal policy k∗(p) = (k∗1,k
∗
2)(p) is given by

(k∗1,k
∗
2)(p) =


(1,1) if p ∈ (p∗2,1)
(1,0) if p ∈ (p∗1, p∗2]

(0,0) if p ∈ (0, p∗1]

and the value function is

v(p) =


gp+

[
λ
λ2

s−gp∗2
]

u0(p)
u0(p∗2)

if p ∈ (p∗2,1],

s+
[g+rg1

1+r − s
1+r

]
p+

[
s−

(g+rg1
1+r − s

1+r

)
p∗1
] u1(p)

u1(p∗1)
if p ∈ (p∗1, p∗2],

2s if p ∈ (0, p∗1],

where p∗1 is defined as

p∗1 =
rs

(1+ r)g1 +g2 −2s
, (2)

and p∗2 ∈ (p∗1,
s

g2
) is implicitly defined by v(p∗2) =

λ
λ2

s.

Proof. Proof is by a standard verification argument. Please see the Appendix B.1 for details.
By the above proposition, the belief at which player 1 switches to the safe arm in the planner’s

solution is higher than it would be if both players’ Poisson arrival rates were equal to λ1 = 1.
This is because, as player 2’s arrival rate λ2 decreases, the benefit from player 1’s experimentation
decreases.

The planner’s solution is depicted in the Figure 1. The planner’s value function is a smooth
convex curve which lies in the range [2s,g]. At the belief p∗2(p∗1) , player 2 (1) switches to the safe
arm.

4 Non-cooperative game

We will first analyse a player’s best responses to a given Markov strategy of the other player.
Best Responses: Fix player j’s strategy k j ( j ∈ {1,2}\{i}). If the payoff function from player
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Belief (p)

Value (v)

2s

p∗1 p∗2

λ
λ2

s

g

1 at R

2 at S

Both at R

0 1

Figure 1.

i’s response satisfies the following Bellman equation, player i is playing a best response:2

vi(p) = s+ k j(p)λ jbi(p,vi)+ max
ki∈{0,1}

ki[λibi(p,vi)− (s−gi p)] (3)

where

bi(p,vi) = p
{gi − vi − (1− p)v

′
i}

r
.

As before, λibi(p,vi) can be interpreted as the learning benefit accruing to player i due to his
own experimentation, while λ jbi(p,vi) is the learning benefit accruing to player i from player j’s
experimentation. The myopic opportunity cost of experimentation continues to be ci(p) = s−gi p.

2By standard results, on any open interval of beliefs in which player j’s action choice is constant, player i’s value
function vi will be continuously differentiable. At those (finitely many) beliefs at which player j’s action changes, v′

should be understood as the left derivative of v (since beliefs can only drift down).

6



For a given k j ∈ {0,1}, from (3) we know that player i’s payoff function satisfies the Bellman
equation if and only if

ki(p)


= 1 if λibi(p,vi)> s−gi p,

∈ {0,1} if λibi(p,vi) = s−gi p,

= 0 if λibi(p,vi)< s−gi p.

By rearranging we can infer that

ki(p)


= 1 if vi > s+ k j

λ j
λi
[s−gi p],

∈ {0,1} if vi = s+ k j
λ j
λi
[s−gi p],

= 0 if vi < s+ k j
λ j
λi
[s−gi p].

This implies that when k j = 1, player i chooses the risky arm, safe arm or is indifferent between
them depending on whether his value in the (p,v) plane lies above, below, or on the line

Di(p) = s+
λ j

λi
[s−gi p] (4)

The single-agent threshold for player i is given by

p̄i =
µis

µis+(1+µi)(gi − s)
(5)

where µi =
r
λi

. In Appendix A.2, we display the ODEs the players’ payoff functions satisfy, as
well as their solutions, for each possible action profile. We start off by showing that, as in the
homogeneous case (Keller, Rady, Cripps (2005)), no efficient equilibrium exists.

Proposition 2 In any MPE, both players play safe at all beliefs in [0, p̄1]. There is thus no efficient

MPE.

Proof. Suppose to the contrary that pl , the infimum of the set of beliefs at which at least one player
plays risky, satisfies pl < p̄1. Clearly, vi(pl) = s for both i ∈ {1,2}. We shall now distinguish two
cases depending on whether or not there exists an ε̄ > 0 such that, in any ε-right neighbourhood
of pl with ε ∈ (0, ε̄), only one player i plays risky. If there does not exist such an ε̄ > 0, i is not
playing a best response, because pl < p̄i <

s
gi

implies that the point (pl,s) is below the diagonal
Di. In the other case, player i faces the same trade-off as a single agent, and does not play a best
response either, because pl < p̄i.

In the next subsection, we will characterise the condition under which an equilibrium in cutoff
strategies exists.
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4.1 Equilibrium in cutoff strategies

As we have argued in the proof of Proposition 2, there is no experimentation below the belief p̄1

in any equilibrium. We will now argue that, in any equilibrium, only player 1 will experiment
in some right-neighbourhood of p̄1, implying that player 1 is the last player to experiment in any
equilibrium.

By Proposition 2, we know that v1(p̄1) = v2(p̄1) = s, and thus, by continuity, both players’
value functions must be below their respective diagonals Di in some neighbourhood of p̄1. Thus,
in any equilibrium, at most one player can play risky in some right-neighbourhood of p̄1. Now,
suppose that player 2 is the only player to experiment in some right-neighbourhood of p̄1. Then,
the relevant ODE (Equation 12 in Appendix A.2) gives us that λ2 p̄1(1− p̄1)v′2(p̄1+) = p̄1λ2(g2 −
s)− rc2(p̄1) < 0, as p̄1 < p̄2. Thus, player 2’s value function drops below s immediately to the
right of p̄1, which contradicts his playing a best response. We can thus conclude that there exists
some belief p̂1 > p̄1 such that, on (p̄1, p̂1), player 2 plays safe. As either player can always
guarantee himself his single-agent payoff by ignoring the information he gets for free from the
other player, his payoff in any equilibrium is bounded below by his single-agent payoff. Thus, in
any equilibrium, v1 > s on (p̄1, p̂1], and player 1 experiments, while player 2 free-rides, in this
range.

Thus, for beliefs right above p̄1, in any equilibrium, player 1’s payoff is given by

v̄1(p) = g1 p+C̄1u1(p), (6)

with C̄1 =
s−g1 p̄1
u1(p̄1)

. Player 2’s equilibrium payoff for these beliefs is given by

v̄2(p) = s+
(g2 − s)p

1+ r
+C̄2u1(p) (7)

with C̄2 =− (g2−s)p̄1
(1+r)u1(p̄1)

.
Since C̄1 > 0 and C̄2 < 0, v̄1 is strictly convex and v̄2 is strictly concave.3 The following lemma

shows that the functions v̄i intersect the corresponding diagonals Di at a unique belief.

Lemma 1 There exists a unique p
′
1 ∈ (p̄1,1) such that v̄1(p

′
1) = D1(p

′
1), and a unique p

′
2 ∈(

p̄2,
s

g2

)
such that v̄2(p

′
2) = D2(p

′
2).

Proof. The function v̄1 is strictly increasing, while D1 is strictly decreasing. Furthermore, v̄1(p̄1)<

D1(p̄1) and v̄1(1) > D1(1). Since both v̄1 and D1 are moreover continuous, there exists a unique
p
′
1 ∈ (p̄1,1) such that v̄1(p

′
1) = D1(p

′
1).

3v̄1 and v̄2 are obtained from Equations 13 and 15 respectively by imposing the condition v̄i(p̄1) = s (i = 1,2).
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As C̄2 < 0, we have

v̄2(p̄2)< s+
[g2 − s]p̄2

1+ r
= s+

[g2 − s]
1+ r

µ2s
(µ2 +1)g2 − s

≡ Ψ̄.

On the other hand, D2(p̄2) = s+ s[g2−s]
λ2[(µ2+1)g2−s] . This implies

D2(p̄2)− Ψ̄ =
s[g2 − s]

[(µ2 +1)g2 − s]λ2(1+ r)
> 0.

Hence, D2(p̄2) > v̄2(p̄2). Furthermore, the function v̄2 is strictly increasing, and D2 is strictly
decreasing, on

(
p̄2,

s
g2

)
, while v̄2

(
s

g2

)
> D2

(
s

g2

)
= s. Since both v̄2 and D2 are moreover contin-

uous, there exists a unique p
′
2 ∈

(
p̄2,

s
g2

)
such that v̄2(p

′
2) = D2(p

′
2).

In the following proposition, we will show that there exists an equilibrium in cutoff strategies
if and only if the degree of asymmetry between the players is high enough, .

Proposition 3 There exists a λ ∗
2 ∈ ( s

h ,1) such that there exists an equilibrium in cutoff strategies

if and only if λ2 ∈ ( s
h ,λ

∗
2 ]. In this equilibrium, player 1 plays risky on (p̄1,1] and safe otherwise,

while Player 2 plays risky on (p
′
2,1] and safe otherwise.

Proof. By our previous arguments, in any equilibrium in cutoff strategies, player 1 will play risky
on (p̄1,1] and safe otherwise. In response, by the definition of p

′
2, player 2 must play risky on

(p
′
2,1] and safe otherwise, if there is an equilibrium in cutoff strategies. Indeed, below p

′
2, player 2

is playing a best response to player 1’s action choice by the definition of p
′
2. Since D2 is decreasing,

it is sufficient to show that player 2’s payoff function is increasing on [p
′
2,1] in order to show that he

is also playing a best response at beliefs above p
′
2. Firstly, we note that the closed-form expression

for player 2’s payoff function (see Equation 11 in Appendix A.2) implies that player 2’s payoff v2

is strictly convex on (p
′
2,1), as v2(p

′
2) =D2(p

′
2)> g2 p

′
2, where the inequality follows from p

′
2 <

s
g2

(see Lemma 1). Furthermore, the relevant ODEs (Equations 14 and 10 in Appendix A.2) show that
v2(p

′
2) = D2(p

′
2) implies smooth pasting at p

′
2. As moreover v̄′2 > 0 (as C̄2 < 0 and u′1 < 0), we

can conclude that player 2’s value function is strictly increasing on (p
′
2,1) as well, and hence that

player 2 is playing a best response at beliefs above p
′
2.

Thus, the candidate strategy profile is indeed an equilibrium if and only if player 1’s strategy is
a best response to player 2’s. This requires player 2 to choose the safe arm for all beliefs at which
player 1’s payoff is below D1. Thus, it remains to determine under what conditions p

′
2 ≥ p

′
1.

We will first argue that p
′
1 (p

′
2) is increasing (decreasing) in λ2. Recall that p

′
1 is the point of

intersection of the function v̄1 and the line D1. As λ2 decreases, the line D1 rotates anticlockwise
around the point ( s

g1
,s). Since v̄1 is independent of λ2, p

′
1 decreases as λ2 decreases. On the other
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hand, as λ2 decreases, the line D2 shifts to the right and becomes steeper. By direct computation,
one shows that v̄2 becomes flatter as λ2 decreases. This implies that p

′
2 increases.

Consider the case λ2 ↓ s
h . Then, D2 → s+ (s−sp)

λ2
. Thus, the belief p̂ such that D2(p̂) = s will

tend to 1. Moreover, v̄2 → s. Hence, p
′
2 → 1. However, D1 still intersects the line s at p = s

g1
,

implying that p′1 ≤
s

g1
< p

′
2.

Next, we consider the case λ2 ↑ 1 and argue that there exists a left neighborhood of 1 such that,
for all λ2 in this neighborhood, p

′
2 < p

′
1. By the ODEs for the (1,0)-region, v̄2 > v̄1 for all beliefs

in (p̄1, p̌], where p̌ = rs
rg1+(g1−g2)

< s
g1

. Note that p̌ ↑ s
g1

as λ2 ↑ 1. Furthermore, recall that p′1 is
implicitly defined by

(1+λ2)(g1 p′1 − s)+C̄1u1(p′1) = 0,

where we note that C̄1 and u1 are both independent of λ2. This implies that (1) p′1 < s
g1

for all
λ2 ∈ [ s

h ,1] (as C̄1 > 0 and u1 < 0 for p < 1), and (2) that p′1 is a continuous function of λ2 (by the
Implicit Function Theorem). Therefore p̂ = maxλ2∈[ s

h ,1]
p′1 <

s
g1

. Thus, we can choose λ 2 ∈ ( s
h ,1)

such that, for all λ2 ∈ [λ 2,1], p̌ > p̂, and therefore v̄2 > v̄1 on (p̄1, p′1]. It thus follows that, for
λ2 ∈ [λ 2,1], p̃2 < p′1, where p̃2 is the belief where the function v̄2 intersects the line D1. As
p′2 ↓ p̃2 for λ2 ↑ 1, we can conclude that there exists some λ̂ 2 ∈ ( s

h ,1) such that, for all λ2 ∈ (λ̂ 2,1),
p′2 < p′1. Thus, by monotonicity of p

′
1 and p

′
2 in λ2, there exists a unique λ ∗

2 ∈ ( s
h ,1) such that

p
′
2 ≥ p

′
1 if and only if λ2 ∈ ( s

h ,λ
∗
2 ].

Appendix B.2 shows that the belief p
′
2 where player 2 switches to the safe arm in the above

equilibrium is strictly greater than p∗2, the threshold in the planner’s solution. This shows that for
p ∈ (p∗2, p

′
2], player 2 inefficiently free-rides.

The equilibrium in cutoff strategies is depicted in Figure 2. In this equilibrium, both players’s
payoffs are equal to s for p ≤ p̄1. For p ∈ (p̄1, p

′
2], player i’s (i = 1,2) payoff is v̄i(p). For p > p

′
2,

player i’s payoff is given by
vr

i (p) = gi p+Cr
i u0(p)

with Cr
i =

v̄i(p
′
2)−gi p

′
2

u0(p′2)
.4 Player 1’s equilibrium payoff function is (strictly) convex (on (p̄1,1)); it

is smooth, except for a kink at p
′
2. Player 2’s payoff function is strictly concave on (p̄1, p

′
2) and

strictly convex on (p
′
2,1); it has an inflection point at p

′
2. It is smooth except for a kink at p̄1.

Recall the intuition for why there is no equilibrium in cutoff strategies in the homogeneous case
(Keller, Rady, Cripps (2005)): There is a region of beliefs at which safe and risky are mutually best
responses, and hence both players cannot be using the same cutoff. Now, the player applying the
most pessimistic cutoff will have lower payoffs than the free-rider, as he will have to bear higher
myopic opportunity costs in exchange for the same learning benefit. Therefore, the free-rider will
cross into the region where risky is dominant at a more pessimistic belief than the pioneer, implying

4These payoffs are obtained from 11 by imposing the condition vr
i (p

′
2) = v̄i(p

′
2) (i = 1,2).
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that the roles of free-rider and pioneer must switch at least once.
With heterogeneous players, by contrast, the respective regions in which risky is dominant no

longer coincide for both players. Now, a higher value for player 2 no longer implies that he will
cross into the region where playing risky is dominant at a more pessimistic belief than player 1.
Geometrically, the diagonals D1 and D2 no longer coincide, as Figure 2 shows. Indeed, as the
proof of Proposition 3 shows, the condition for existence of an equilibrium in cutoff strategies is
precisely that player 2 will enter the region in which risky is dominant at a more optimistic belief
than player 1 does, even though the latter’s payoff function is lower at each belief. This is possible
if and only if the region in which risky is dominant for player 2 is relatively small enough compared
to that of player 1, i.e. if and only if λ2 is small enough compared to λ1 = 1.

Belief (p)

Value (v)

s

D1 : v = s+ λ2
λ1
(s−g1 p)

s
g1

D2 : v = s+ λ1
λ2
(s−g2 p)

s
g2p

′
1

p̄1

v2

v1

p
′
20 1

Figure 2.

4.2 Equilibria in non-cutoff strategies

In the previous subsection, we have identified a necessary and sufficient condition for the existence
of an equilibrium in cutoff strategies. In this subsection, we will analyse equilibria where at least
one of the players uses a non-cutoff strategy. Such equilibria will always exist, as the following
proposition shows. To state the proposition, we let vi be player i’s equilibrium payoff. For both
players n ∈ {1,2}, we define pn

S as the (unique) point of intersection of vn and Dn.5 Let pi
S =

min{p1
S, p2

S}.

5The uniqueness of pn
S ∈ (p̄1,

s
gn
) follows from (10).
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Proposition 4 For any λ2 ∈ ( s
h ,1), there exists a continuum of Markov perfect equilibria in which

at least one player uses a non-cutoff strategy. For each integer k > 1 and each sequence of thresh-

old beliefs (p̃i)
k
i=1 such that p̄1 < p̃1 < · · · < p̃k = pi

S, there exists an equilibrium such that both

players play safe at all beliefs p ≤ p̄1; player 1 plays risky and player 2 plays safe in (p̄1, p̃1]∪∪
i∈2N∧i<k(p̃i, p̃i+1] , while player 1 plays safe and player 2 plays risky in

∪
i∈2N∧i≤k(p̃i−1, p̃i];

on (pi
S, p j

S], player i plays risky and player j plays safe, while both players play risky on (p j
S,1].

The same strategies with k = 1 also describe an equilibrium in which only player 2 uses a cutoff

strategy if and only if p
′
2 = p2

S < p1
S.

On [0, p̄1], both players’ value function is s. For even i < k, on (p̃i, p̃i+1], player 1’s (2’s) value

function is given by (13) ((15)), while on (p̃i−1, p̃i], player 2’s (1’s) value function is given by (13)

((15)); on (pi
S, p j

S], player i’s ( j’s) payoff is given by (13) ((15)). On (p j
S,1], both players’ payoffs

are given by (11). The constants of integration are determined by value matching.

Proof. That the proposed strategies are mutually best responses immediately follows from our
discussion at the top of Section 4. That such equilibria always exist follows immediately from the
continuity of players’ payoff functions and the fact that Di(p̄1)> s for both i ∈ {1,2}.

As p̄1 < p̄2, the proposition implies that there exist equilibria in which player 2 experiments
below his single-agent threshold p̄2. Indeed, by being the last player to experiment on (p̄1, p̃1],
player 1 provides an encouragement effect to player 2, as the latter is willing to play risky on
(p̃1, p̃2] only because he knows that, should his experimentation not be successful, he will get to
free-ride on player 1’s experimentation once the belief will have dropped to p̃1.

If the equilibrium in cutoff strategies exists, it allows player 2 to take maximal advantage of
player 1’s free-riding efforts. Therefore, the equilibrium in cutoff strategies is the worst (best)
equilibrium for player 1 (player 2). Thus, in any equilibrium in which players swap the roles of
pioneer and free-rider at least once, player 1’s (2’s) payoff will hit D1 (D2) at a more pessimistic
(optimistic) belief than in the equilibrium in cutoff strategies, as the following proposition shows.

Proposition 5 Consider any equilibrium described in Proposition 4. Suppose p1
S > p̄1 is the belief

at which the equilibrium payoff of player 1 meets the line D1 and p2
S > p̄1 be the belief at which

the equilibrium payoff of player 2 meets the line D2. Then, we have p1
S < p

′
1 and p2

S > p
′
2.

Proof. It is sufficient to show that v̄1 < v1 and v̄2 > v2 on (p̃1, p j
S], where vn is player n’s equilibrium

payoff function.
Note that v̄n(p̃1)= vn(p̃1) for both n∈{1,2} and suppose that v̄2(p̃i−1)≥ v2(p̃i−1) and v̄1(p̃i−1)≤

v1(p̃i−1) for some i ∈ {2, · · · ,k}. Suppose that i− 1 ≥ 1 is odd, and let vrr
1 be player 1’s payoff

from deviating to playing risky on (p̃i−1, p̃i]. By construction, vrr
1 (p̃i−1) = v1(p̃i−1) ≥ v̄1(p̃i−1).

Suppose to the contrary that there exists a belief p ∈ (p̃i−1, p̃i] such that v̄1(p) = vrr
1 (p). The rele-

vant ODEs ((12) and (10)) imply that vrr
′

1 (p−)> v̄′1(p−). As vrr
1 (p̃i−1) = v1( ˜pi−1)≥ v̄1(p̃i−1), this

12



implies that there exists a p̂ ∈ [p̃i−1, p̃i) such that vrr
1 (p̂) = v̄1(p̂) and vrr

′

1 (p̂+)< v̄′1(p̂+), a contra-
diction to (12) and (10). By the same token, suppose that there exists a belief p ∈ (p̃i−1, p̃i] such
that v2(p) = v̄2(p). As s > pg2, the relevant ODEs ((12) and (14)) imply that v̄

′
2(p−) > v′2(p−).

As v̄2(p̃i−1) ≥ v2(p̃i−1), this implies that there exists a p̂ ∈ [p̃i−1, p̃i) such that v2(p̂) = v̄2(p̂) and
v
′
2(p̂+)> v̄′2(p̂+), a contradiction to (12) and (14).

Now, let i− 1 ≥ 2 be even. Note that our previous step implies that v̄2(p̃i−1) > v2(p̃i−1) and
v̄1(p̃i−1) < v1(p̃i−1). Suppose that there exists a p ∈ (p̃i−1, p̃i] such that vn(p) = v̄n(p) for an
n ∈ {1,2}. As (k1,k2) = (1,0) on (p̃i−1, p̃i], this immediately implies that vn(p̃i−1) = v̄n(p̃i−1), a
contradiction.

On (p̃k, p j
S], a similar argument to the case of even (odd) i−1 applies if j = 2 ( j = 1), so that

we can conclude that v̄1 < v1 and v̄2 > v2 on (p̄1, p j
S], and hence p1

S < p′1 and p2
S > p′2.

Propositions 4 and 5 imply that an equilibrium in which only player 2 uses a cutoff strategy (the
equilibria corresponding to k = 1 in Proposition 4) exists if and only if λ2 > λ ∗

2 , as the following
corollary shows. In the limit λ2 ↓ λ ∗

2 , this equilibrium coincides with the equilibrium in cutoff
strategies.

Corollary 1 There exists an equilibrium in which only player 2 uses a cutoff strategy if and only

if λ2 > λ ∗
2 .

Proof. If λ2 ≤ λ ∗
2 , p

′
1 ≤ p

′
2, by the proof of Proposition 3. Suppose to the contrary that the

equilibrium in which only player 2 uses a cutoff exists. By Proposition 5, p1
S < p

′
1 ≤ p

′
2 < p2

S, a
contradiction to the characterisation of this equilibrium in Proposition 4.

Now, suppose λ2 > λ ∗
2 . By the proof of Proposition 3, p

′
1 > p

′
2. It thus remains to show

that p1
S > p

′
2. Yet, player 1’s payoff from the conjectured equilibrium strategies at p

′
2 is given by

v̄1(p
′
2)< D1(p

′
2), the inequality being immediately implied by p

′
1 > p

′
2, we have p1

S > p
′
2, and, by

Proposition 4, the equilibrium exists.
Suppose λ2 ∈ ( s

h ,λ
∗
2 ]. This implies that the equilibrium in cutoff strategies exists. Propositions

4 and 5 allow us to compare the experimentation intensities. First, observe that in the equilibrium
in cutoff strategies, both players experiment for beliefs greater than p

′
2. Since p2

S > p
′
2 (by Propo-

sition 5), the range of beliefs where both players experiment is greater in the equilibrium in cutoff
strategies than in any other equilibrium. Next, in the equilibrium in cutoff strategies, whenever
only one player experiments, it is the player with the higher payoff arrival rate, player 1. In any
other equilibrium, however, there is a range of beliefs where player 2 plays the role of the lonely
pioneer. Since, in any equilibrium, all experimentation ceases at p̄1, the intensity of experimen-
tation is thus highest in the equilibrium in cutoff strategies. The following proposition is thus no
surprise.
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Proposition 6 Suppose λ2 ≤ λ ∗
2 and let vc

agg be the aggregate equilibrium payoff in the equilibrium

in cutoff strategies and vnc
agg be the aggregate equilibrium payoff in an arbitrary equilibrium in non-

cutoff strategies. Then, vc
agg ≥ vnc

agg, with the inequality strict on (p̃1,1).

Proof. If player i (i = 1,2) experiments and player j ( j = 1,2, j ̸= i) free rides then the players’
aggregate equilibrium payoff is given by vagg = vi + v j, with vi satisfying the ODE (12) and v j

satisfying the ODE (14). If both players experiment then vagg = v1 + v2 and vn (n = 1,2) satisfy
the ODE (10).

From proposition (4), we know that vc
agg(p̃1) = vnc

agg(p̃1). Suppose vc
agg(p̃i−1)≥ vnc

agg(p̃i−1) for
some i ∈ {2,3, ....,k}. Suppose first that i−1 ≥ 1 is odd. If there exists a p ∈ (p̃i−1, p̃i] such that
vc

agg(p) = vnc
agg(p), then by the ODEs (12) and (14), we can conclude that vc′

agg(p−) > vnc′
agg(p−).

This implies there exists a p̂ ∈ [p̃i−1, p) such that vc
agg(p̂) = vnc

agg(p̂) and vc′
agg(p̂+) < vnc′

agg(p̂+), a
contradiction to ODEs (12) and (14).

Suppose i−1≥ 2 is even. Then from the previous step we can infer that vc
agg(p̃i−1)> vnc

agg(p̃i−1).
In both kinds of equilibria, if i−1 is even, (k1,k2) = (1,0) on (p̃i−1, p̃i]. This implies that we have
vc

agg(p)> vnc
agg(p) for all p ∈ (p̃i−1, p̃i]. Thus, for all p ∈ (p̃1, p̃k], vc

agg(p)> vnc
agg(p).

As λ2 ≤ λ ∗
2 , we have p̃k = p1

S. An argument similar to that for even i−1 shows that vc
agg > vnc

agg

on p ∈ (p1
S, p

′
2]. Now, suppose that there exists a p̂ ∈ (p

′
2, p2

S] such that vc
agg(p̂) = vnc

agg(p̂). By the
ODEs (12) and (10), this implies vc′

agg(p̂−)> vnc′
agg(p̂−). This leads to a contradiction by the same

argument as above. As (k1,k2) = (1,1) prevails in both equilibria on (p2
S,1), the claim follows.

The comparison between the equilibrium in cutoff strategies and an equilibrium in which play-
ers swap roles once is depicted in figure 4(a).6 Figures 4(b) and 4(c) depict the actions of players
in the equilibrium in cutoff strategies and the equilibrium in non-cutoff strategies respectively.
These equilibria correspond to the ones depicted in Figure 4(a).

The black curves v1 and v2 in Figure 4 (a) depict the payoffs to player 1 and 2 respectively in
the equilibrium in cutoff strategies. In the equilibrium in non-cutoff strategies, payoffs coincide for
beliefs less than or equal to p̃1. At p̃1, players switch arms. The blue curve depicts the payoff to
player 1 and the red curve depicts the payoff to player 2 in the equilibrium in non-cutoff strategies
for p > p̃1. As argued, the blue curve meets the line D1 at a belief p1

S, which is strictly less than
p
′
1. In the region (p̃1, p1

S], player 2 experiments and player 1 free rides. At p1
S, player 1 switches

to the risky arm and player 2 switches to the safe arm. When the red curve meets the line D2 at
p2

S > p
′
2, player 2 switches to the risky arm again.

By Corollary 1, the equilibrium in which only player 2 uses a cutoff strategy (i.e. the equi-
librium corresponding to the case k = 1 in Proposition 4, which is depicted in Figure 5) exists
if and only if λ2 > λ ∗

2 . If λ2 ≤ λ ∗
2 , meanwhile, the equilibrium in cutoff strategies exists (see

6Lemma 5 implies that the qualitative characteristics of p1
s and p2

s are the same in any equilibrium in non-cutoff
strategies.
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Belief (p)

Value (v)

s

D1 : v = s+ λ2
λ1
(s−g1 p)

D2 : v = s+ λ1
λ2
(s−g2 p)

p
′
1p̄2 p̃1 p2

sp1
sp̄1

v2

v1

p
′
2

0 1

Figure 4(a).

(p)

k1

1

0 1p̄1 (p)

k2

1

0 1p
′
2

Figure 4(b): Actions of players in the equilibrium in cutoff strategies.

(p)

k1

1

0 1p̄1 p̃1 p1
s (p)

k2

1

0 1p̃1 p1
s p2

s

Figure 4(c): Actions of players in the equilibrium in non-cutoff strategies.
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Belief (p)

Value (v)

s

D1 : v = s+ λ2
λ1
(s−g1 p)

D2 : v = s+ λ1
λ2
(s−g2 p)

p̄1 p̄2 p
′
1p

′
2 = p2

S
p1

s

v2

v1

0 1

Figure 5.

Proposition 3). Thus, there always exists an equilibrium in which player 2 plays a cutoff strat-
egy. By an argument similar to that in the proof of Proposition 6, one can show that, on (p̄1, p

′
2],

the equilibrium of Corollary 1, which is the only equilibrium in which player 1 is experiment-
ing throughout this range, strictly welfare-dominates all other equilibria. Yet, the belief region in
which (k1,k2) = (1,1) prevails may be larger in equilibria in which neither player uses a cutoff
strategy, making a welfare ranking for all beliefs hard to establish.

5 Conclusion

In this paper, we have characterised the set of Markov perfect equilibria in a two-armed bandit
model with heterogeneous players. We have shown that there always exists an equilibrium in
which the weaker player uses a cutoff strategy. If the heterogeneity is stark enough, there exists an
equilibrium in cutoff strategies. If such an equilibrium exists, it is welfare-optimal.

We have restricted players to using one arm only at any given instant t. By the linearity of the
players’ Bellman equations, our equilibria would remain equilibria if we allowed players to select
experimentation intensities ki,t ∈ [0,1]. There might, however, be more equilibria in this case.

We have focussed our attention on asymmetries in the players’ conditional lump-sum arrival
rates given that their risky arm is good. Such asymmetries pertain to both payoffs and the learning
process. Our analysis has relied heavily on the characterisation of players’ best responses via the
diagonals Di (see Equation (4)), which was pioneered by Keller, Rady, Cripps (2005) for the
homogeneous-player case. We expect that a similar approach could, mutatis mutandis, be used
to study other kinds of asymmetries, e.g. pertaining to players’ safe-arm payoffs si or risky-arm

16



payoffs hi. We should expect a similar result to our Proposition 3 to hold in these cases, namely that
there existed an equilibrium in cutoff strategies if and only if the heterogeneity was stark enough.
The analysis of otherwise symmetric players that hold different priors might be more complex,
however, as the informativeness of a given amount of experimentation would now differ between
players. We commend these questions for future research.
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APPENDIX

A Ordinary Differential Equations

A.1 ODEs in the planner’s problem

Clearly, if (k1,k2) = (0,0) is played at a belief p, the planner’s payoff function satisfies v(p) = 2s.
If the planner plays k1 = k2 = 1 on an open set of beliefs, his payoff function on this set satisfies

v(p) = 2s+B1(p,v)− c1(p)+B2(p,v)− c2(p),

which is equivalent to the ODE

λ p(1− p)v
′
(p)+(r+λ p)v(p) = (r+λ )pg. (8)

This is solved by
v(p) = gp+Cu0(p)

where C is a constant of integration.
By the same token, the ODE for (k1,k2) = (1,0) is given by

p(1− p)v
′
(p)+(r+ p)v(p) = r(s+ pg1)+ pg. (9)

This is solved by

v(p) = s+
[

g+ rg1

1+ r
− s

1+ r

]
p+Cu1(p).

A.2 ODEs of players in the non-cooperative game

If k1 = k2 = 0, both players’ payoff functions satisfy vi(p) = s.
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If k1 = k2 = 1 prevails on an open set of beliefs in the non-cooperative game, both players’
value function for beliefs in this set satisfies

λ p(1− p)v
′
i(p)+(r+λ p)vi(p) = (r+λ )pgi. (10)

This is solved by
vi = gi p+Cu0(p) (11)

where C is a constant of integration.
If ki = 1 and k j = 0, player i’s payoff function satisfies

λi p(1− p)v
′
i(p)+(r+λi p)vi(p) = (r+λi)pgi. (12)

Solving this, we get
vi(p) = gi p+Cui(p) (13)

where ui(p) = (1− p)[ (1−p)
p ]µi and µi =

r
λi

. Player j’s payoff function satisfies

λi p(1− p)v
′
j(p)+(r+λi p)v j(p) = rs+λi pg j. (14)

This is solved by

v j = s+
λi

λi + r
(g j − s)p+Cui(p). (15)

B Other Proofs

B.1 Proof of Proposition 1

The function v satisfies v = 2s on [0, p∗1], v = 2s+B1−c1 on (p∗1, p∗2] and v = 2s+B1−c1+B2−c2

on (p∗2,1];
7 thus, v is the payoff function associated with the policy k∗.8 We shall first show that v

is of class C1, (strictly) increasing and (strictly) convex (on (p∗1,1)).
One computes that, for p ∈ (p∗1, p∗2), B1(p,v)− c1(p) = ψ(p), where ψ is defined as

ψ(p) =−s+ pg1 +
1
r

p
[

g− s− g+ rg1

1+ r
+

s
1+ r

+
r
p

(
s− p∗1

(
g+ rg1

1+ r
− s

r+1

))
u1(p)
u1(p∗1)

]
.

Direct computation shows that u′′1 > 0 and s− p∗1
(g+rg1

1+r − s
1+r

)
> 0, so that ψ , and hence v|(p∗1,p

∗
2)

is

7We suppress arguments whenever this is convenient.
8In Appendix A.1, we display the ODEs that v satisfies for each range of beliefs and the corresponding general

form of v for that range. The specific value of v is obtained by value matching.
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strictly convex. One furthermore shows by direct computation that ψ(p∗1) = ψ ′(p∗1) = 0, implying
that v|(0,p∗2) is of class C1.

We shall now show that p∗2 is well-defined. Indeed, by definition, x = p∗2 must satisfy[
g+ rg1

1+ r
− s

1+ r

]
x+

[
s−

(
g+ rg1

1+ r
− s

1+ r

)
p∗1

]
u1(x)

u1(p∗1)
=

s
λ2

.

The left-hand side of this equation is strictly increasing in x for x > p∗1 and equal to s < s
λ2

at
x = p∗1. Furthermore, at x = s

g2
, the left-hand side exceeds

[g+rg1
1+r − s

1+r

] s
g2

> s
λ2

. By continuity,
the equation thus admits of a unique root p∗2 ∈ (p∗1,

s
g2
).

As p∗2 < s
g2

, λ
λ2

s − p∗2g > 0, and v|[p∗2,1] is strictly convex as well. It remains to show that
v|[p∗2,1] is also strictly increasing. By convexity, it is sufficient to show smooth pasting at p∗2. By
the ODE for the region (p∗1, p∗2) (Equation 9 in Appendix A.1), we have p∗2(1− p∗2)v

′(p∗2−) =[
rs+ rp∗2g1 + p∗2g− (r+ p∗2)

λ
λ2

s
]
. By the ODE for the (p∗2,1)-region (Equation 8 in Appendix

A.1), we find p∗2(1− p∗2)v
′(p∗2+)=

[
(r+λ )p∗2g− (r+λ p∗2)

λ
λ2

s
]
/λ , and hence v′(p∗2+)= v′(p∗2−).

It remains to show that v solves the Bellman equation, i.e. that Bi ≤ ci for both i ∈ {1,2}
on [0, p∗1]; B1 ≥ c1 and B2 ≤ c2 on (p∗1, p∗2]; and Bi ≥ ci for both i ∈ {1,2} on (p∗2,1]. First, let
p ∈ [0, p∗1]. In this case, v = 2s, and Bi ≤ ci if and only if p ≤ rs

rgi+λi(g−2s) , which is verified for all
p ≤ p∗1. Now, let p ∈ (p∗1, p∗2]. As v is strictly increasing in this range, v = 2s+B1 − c1 > 2s, and
thus B1 > c1. Moreover, v = 2s+B1−c1 implies that B2 = λ2B1 = λ2 (v− s− pg1)≤ s− pg2 = c2

if and only if v ≤ λ
λ2

s, which is verified as p ≤ p∗2. Finally, let p ∈ (p∗2,1). In this range, we have

that g−v− (1− p)v′ = r
λ p

(
λ
λ2

s− p∗2g
)

u0(p)
u0(p∗2)

, so that Bi =
λi
λ v− pgi, which exceeds ci = s− pgi if

and only if v ≥ λ
λi

s. By monotonicity of v, v ≥ λ
λ2

s > λ s in this range, which completes the proof.

B.2 To show that p∗2 < p
′
2

Recall from the proof of Proposition 2 that p∗2 was implicitly defined as the unique root of the (for
p > p∗1) strictly increasing function ζ , where

ζ (p) =
[

g1 +
g2 − s
1+ r

]
p+

[
s−

(
g1 +

g2 − s
1+ r

)
p∗1

]
u1(p)
u1(p∗1)

− s
λ2

.

By the same token, p
′
2 is implicitly defined by v̄2(p

′
2) = D2(p

′
2), which is equivalent to

g2 − s
1+ r

p
′
2 + p

′
2g1 −

s
λ2

=
g2 − s
1+ r

p̄1
u1(p

′
2)

u1(p̄1)
.
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As p
′
2 > p̄2 > p∗1, it remains to show that

ζ (p
′
2) =

g2 − s
1+ r

p̄1
u1(p

′
2)

u1(p̄1)
+

[
s−

(
g1 +

g2 − s
1+ r

)
p∗1

]
u1(p

′
2)

u1(p∗1)
> 0.

For this, it is sufficient that

s−
(

g1 +
g2 − s
1+ r

)
p∗1 > 0,

which follows by direct computation.
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