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1 Introduction

In many instances, organizations face difficulties in providing the proper incen-

tives to their members because performance cannot be verified, i.e. enforced

by a court. As noted by the literature on relational contracts, however, the

mutual dependence that repeated interaction between the same parties fos-

ters may allow contracting parties to overcome these difficulties through the

building of mutual trust. This engenders an implicit, or “relational,” contract

between them, whereby the principal “voluntarily” rewards the agent for his

effort. As the worst the agent can do to the principal is to break off the re-

lationship entirely, the most the principal can credibly promise as a reward is

the value of the entire future relationship to her.

Our goal here is to analyze the workings of such relational contracts when,

at the time of deciding on rewards, the principal knows more about the future

development, and hence the value, of the relationship. Indeed, management

may e.g. be better informed about the likely evolution of demand for a firm’s

product than workers. In such a context, workers must trust management not

to use its informational advantage against them, e.g. by fraudulently claiming

a threat of future demand contraction to cut their bonus payments or even

let go of them.

We show that an optimal relational contract in such a setting can lead

to a dynamic that has been discussed in the strategic management literature,

which has noted that downsizing often seems less effective than originally

anticipated.1 The prevailing explanation for these implicit downsizing costs

seems to be that surviving employees tend to consider downsizing as a breach

of a “psychological contract” (Love and Kraatz (2009)), and thus switch to

a kind of ‘punishment mode’ in response. As Cascio (1993) writes: “Study

after study shows that following a downsizing, surviving employees become

narrow-minded, self-absorbed, and risk averse. Morale sinks, productivity

drops, and survivors distrust management.” Love and Kraatz (2009) write:

“Though downsizing was perfectly legal and widely advocated as an efficient

business practice, it connoted opportunism and signaled that a firm was an

untrustworthy actor that might not be counted on to meet its commitments

in the future. Employees clearly interpreted downsizing as a betrayal and

characterized downsizers as untrustworthy.”

1See e.g. Cascio (1993) and Datta, Guthrie, Basuil, and Pandey (2010).
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Yet, there is some evidence to suggest that this ‘punishment mode’ only

lasts for a limited period of time. Indeed, Goesaert, Heinz, and Vanormelingen

(2015) show that firm performance tends to drop at the downsizing event,

recovering at best to pre-downsizing levels afterwards. The survey paper by

Datta, Guthrie, Basuil, and Pandey (2010) quotes several studies showing

that the benefits of downsizing, if any, will materialize only 2-3 years after

the downsizing event (see bottom of their page 355, and the references cited

there). Thus, punishment does not seem to be of the grim-trigger form, which

would constitute the harshest, and hence optimal, penal code.2

We do not find the prevailing explanations, according to which implicit

downsizing costs are a phenomenon that is supposed to occur off the equilib-

rium path of play, very convincing. Indeed, the very fact that it seems to occur

so regularly that it has been noted in the management literature would in our

view militate against its being an off-path phenomenon. By contrast, our

paper will provide a story generating implicit downsizing costs as an on-path

phenomenon. They will indeed arise from a relational, or “psychological,”

contract, yet not from its breakdown but rather as part of the path of play

in an optimal relational contract, where they will act as a commitment device

only to downsize when it is necessary to do so.

More specifically, our model starts from the standard relational-contracting

framework, in which a principal and an agent interact repeatedly over time.

The agent has to exert effort to produce output, which translates into a profit

for the principal. Effort is costly to the agent. By assuming that the agent

is risk neutral and effort costs are linear in the level of effort exerted, we can

interpret our agent as representing the firm’s total workforce, which is made

up of homogeneous workers.3 Only one-period contracts are possible; these

cannot condition on the agent’s effort choice, which, although observable, con-

tains subjective aspects and is hence not contractible. As effort is perfectly

observable by both parties to the relationship, however, continuation play can

depend on the level of effort observed. In particular, the principal can pay the

agent a discretionary bonus for choosing the right level of effort; this bonus

can be enforced by the agent’s threat to leave the relationship if a bonus pay-

2See Abreu (1988).
3This interpretation presupposes multilateral relational contracts, by which a deviation

in the relationship with one agent is punished by a complete loss of trust in all other
relationships, see Levin (2002).
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ment that was due to him was reneged on. Therefore, the principal can only

credibly commit to a bonus that is at most as high as the expected value of

the continuation of the relationship to her. The principal’s profits, which are

generated by the (publicly observable) output in a given period, depend on

the binary state of the world in that period, which is only privately observed

by the principal. The effort level the principal wants to induce may thus well

depend on the current state of the world. The state of the world for the next

period is privately observed by the principal before she decides on the cur-

rent period’s bonus. She thus has some private information on the value of

the continuation of the relationship when she decides whether to pay out the

bonus, or to renege, and thus to end the relationship.

Our analysis shows that, even though there is only one-sided private in-

formation, some surplus may optimally be destroyed along the path of play,

leading to implicit downsizing costs. The goal of this arrangement is to deter

the principal from mulcting the agent of the bonus due to him by understating

the value of the continuation of the relationship. Indeed, lest the principal

be tempted by such a deviation, continuation play following a pessimistic an-

nouncement must be rendered sufficiently unattractive. One way of achieving

this goal would be to force the principal to pay the agent a transfer whenever

the continuation value is low. This, however, turns out not to be optimal in

our setting, the reason being that this penalty would hurt a truthful on-path

principal and a lying off-path principal alike. By contrast, a distortion in the

agent’s effort hits an off-path principal, who has falsely claimed that effort

is less productive, more than an on-path principal, who has been honest in

invoking a low productivity of effort.

In most of the paper, we focus on the case in which the principal’s type

is iid across periods. In this case, only a distortion in the next period hits an

off-path principal more severely than an on-path principal, and consequently,

implicit downsizing costs only last for one period. Indeed, the management

literature has noted that, at the occurrence of downsizing events, there is often

some overshooting in the reduction of labor input, as evidenced by the fact

that firms tend to increase labor input again shortly after downsizing, while

the firm’s environment has not changed.4

In Section 5, we extend our analysis to persistent shocks. In this case,

4See Cascio (1993).
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distortions gradually attenuate over time but only ever vanish in the limit.

The reason is that, with persistent shocks, an off-path principal is hit more

severely by a distortion in any future period, but the difference in on-path vs.

off-path costs diminishes with distance in time.

The idea that repeated interaction endogenously creates some scope for

commitment via implicit contracts has been applied to labor markets by Bull

(1987), as well as MacLeod and Malcomson (1989).5 These early papers ab-

stracted from informational asymmetries, focusing instead on the question of

how incentives can be governed by non-contractual agreements. Levin (2003)

augmented the analysis by introducing informational asymmetries, analysing

the cases in which the employee privately knows his effort costs (adverse selec-

tion), his effort level can only be imperfectly observed (moral hazard), as well

as the case in which the employer privately observes a performance measure,

while not observing the agent’s effort choice directly. Malcomson (2016) intro-

duces persistent types into Levin’s (2003) adverse-selection model, and finds

that a full separation of types is not possible when continuation payoffs are

on the Pareto frontier. Malcomson (2015) augments Levin’s (2003) adverse-

selection model by the introduction of different principal-types denoting the

productivity of the agent’s effort in the current period. At the time the princi-

pal decides on her bonus payment, however, she does not have any additional

information concerning future productivity, in contrast to our setting. Halac

(2012) analyzes the case of a principal who privately knows the value of her

outside option while not being able to observe the agent’s effort level directly.

In Halac (2012), there is no direct productive distortion in the agent’s not

knowing the principal’s private information; in our setting, by contrast, the

first-best level of effort depends on its productivity. In Li and Matouschek

(2013), the principal has one-sided private information as well. In contrast to

our setting, this information pertains to the cost of transferring surplus to the

agent, rather than producing surplus. Furthermore, the private information

pertains to the current period; information about the future is symmetrically

held. This allows Li and Matouschek (2013) to apply recursive techniques. In

contrast to the implicit downsizing costs in our setting, they find that every

optimal equilibrium has the property of being sequentially optimal as well.

The rest of the paper is set up as follows: Section 2 introduces the model;

5See Malcomson (2012) for an overview of the literature on relational contracts.
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Section 3 reviews some benchmarks; Section 4 presents the main results, while

Section 5 discusses an extension to persistent shocks. Section 6 concludes.

Proofs not given in the text can be found in the Appendix.

2 The Model

Players. There is one principal (“she”) and one agent (“he”), who are both

risk neutral and who interact repeatedly in periods t = 1, 2, · · · .
Actions. At the beginning of every period t, the principal makes an

employment offer to the agent, consisting of a fixed wage wt ∈ [−w̄, w̄], where

w̄ > 0 is assumed to be large enough. The agent then accepts (dt = 1) or

rejects (dt = 0) the employment offer. If he accepts, the wage wt is immedi-

ately paid. (If wt < 0, the agent pays −wt to the principal.) He subsequently

chooses his effort level nt ∈ R+. At the end of the period, the principal can

pay the agent a non-contractible, non-negative, bonus bt ∈ [0, b̄], where b̄ > 0

is assumed to be large enough. Furthermore, she can send a non-verifiable

cheap-talk message θ̂t ∈ {θl, θh} at this time.

Information. The public events (i.e. those that can be observed by both

the principal and the agent) in period t are given by ht =
{
wt, dt, yt, bt, θ̂t

}
,

where yt = g(nt). The production function g : R+ → R+ is C2, satisfies

g′ > 0 > g′′ and limn↓0 g
′(n) =∞, limn→∞ g

′(n) = 0. It is commonly known by

the players. A public history of length t−1, ht−1 (for t ≥ 2) collects the public

events up to, and including, time t−1, i.e. ht−1 := (hτ )
t−1
τ=1. We denote the set

of public histories of length t−1 by Ht−1. (We set H0 = {∅}.) In each period,

a strategy for the agent specifies what wage offers to accept as a function

of the previous public history, and what level of effort to exert if he accepts

employment as a function of the previous public history and current-period

wages. Formally, it is a sequence of mappings
{
σAt
}∞
t=1

, where, for each t ∈ N,

σAt = (dt, nt), and dt : Ht−1 × [−w̄, w̄]→ {0, 1}, (ht−1, wt) 7→ dt(h
t−1, wt) and

nt : Ht−1 × [−w̄, w̄]× {0, 1} → R+, (ht−1, wt, dt) 7→ nt(h
t−1, wt, dt).

The principal additionally knows her type in period t+ 1, θt+1 ∈ {θl, θh},
before deciding on the bonus payment bt in period t; the agent never learns

the realizations of the principal’s types. The values satisfy θh > θl > 0 and

are commonly known. We write θt = {θτ}tτ=1 for the sequence of realizations

of the principal’s types up to, and including, period t. The principal events in
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period t are given by ht =
{
wt, dt, yt, θt+1, bt, θ̂t

}
; that is, the principal learns

about her period-t+1 type already in period t, before paying the bonus in the

respective period. A principal history of length t− 1, ht−1 (for t ≥ 2) collects

the principal events up to, and including, time t− 1, i.e. ht−1 := (hτ )
t−1
τ=1. We

denote the set of principal-histories of length t− 1 by Ht−1. We assume that

the principal’s type in period t = 1 is commonly known to be θ1 = θh and thus

set H0 = {θh}. In each period, a pure strategy for the principal specifies his

wage offers as a function of the previous principal history, as well as his bonus

payment and report as a function of the previous history, current-period wages

and output, as well as his type in the next period. Formally, it is a sequence of

mappings
{
σPt
}∞
t=1

, where, for each t ∈ N, σPt = (wt, bt, θ̂t), and wt : Ht−1 →
[−w̄, w̄], ht−1 7→ wt(h

t−1), bt : Ht−1 × [−w̄, w̄] × {0, 1} × R+ × {θl, θh} →
[0, b̄], (ht−1, wt, dt, yt, θt+1) 7→ bt(h

t−1, wt, dt, yt, θt+1), with the restriction that

dt = 0⇒ bt(h
t−1, wt, dt, yt, θt+1) = 0, and θ̂t : Ht−1 × [−w̄, w̄]× {0, 1} × R+ ×

{θl, θh} → {θl, θh}, (ht−1, wt, dt, yt, θt+1) 7→ θ̂t(h
t−1, wt, dt, yt, θt+1). A pure

public strategy by the principal is a pure strategy which does not condition

on her past private information; formally, a strategy
{
σPt
}∞
t=1

is said to be a

public strategy if, for each period t ∈ N, it can be written σPt = (w̃t, b̃t,
˜̂
θt),

where w̃t : Ht−1 → [−w̄, w̄], b̃t : Ht−1× [−w̄, w̄]×{0, 1}×R+×{θl, θh} → [0, b̄]

and
˜̂
θt : Ht−1 × [−w̄, w̄]× {0, 1} × R+ × {θl, θh} → {θl, θh}.
While θ1 = θh, the principal’s types {θt}∞t=2 are i.i.d. across periods (ex-

cept in Section 5); for all t = 2, 3, · · · , the probability that θt = θh is q ∈ (0, 1).

The probability q, as well as the principal’s type in the first period, are com-

mon knowledge.

Payoffs. The principal’s period payoff in period t is given by

dt(θtyt − wt) − bt; the agent’s is given by dt(wt − ntc) + bt, where c > 0 is

his marginal cost of effort. Both players discount future payoffs with the

discount factor δ ∈ (0, 1).

Our solution concept is perfect Bayesian equilibrium in (pure) public

strategies (PPE), as defined above. There are no long-term contracts or other

means for the principal or the agent to commit to a certain course of action.

In particular, the output yt is assumed to be non-verifiable.

Our objective is to find a PPE that maximizes the principal’s ex ante ex-

pected profit Π1 among all PPE. As expected surplus can be transferred freely

through w1, the fixed wage in the first period, any equilibrium maximizing Π1
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also maximizes the players’ joint surplus given the constraints, as shown by

the following proposition, which parallels Levin’s (2003) Theorem 1.

Proposition 1 Suppose there exists a PPE leading to a joint surplus of s ≥ 0.

Then, there exists a PPE giving the principal an expected payoff of π and the

agent an expected payoff of u, for any (π, u) ∈ {(x, y) ∈ R+ : x+ y = s}.

Proof.

The proof follows that of Theorem 1 in Levin (2003) and is therefore

omitted. �

As on-path equilibrium actions are completely determined by past type

realizations, we shall replace histories as defined above with the history of

previously reported types, which, on the equilibrium path, coincide with the

history of past type realizations. By our choice of equilibrium concept, there

is no loss to focussing on truth-telling equilibria; i.e., on the equilibrium path,

reported types will coincide with the history of past type realizations, θt =

{θτ}tτ=1. In a slight abuse of notation, we will thus write w(θt) for wt(h
t−1),

and n(θt) for nt(h
t−1, w(θt), 1), the agent’s effort choice on the equilibrium

path in period t given history θt. In addition, we shall use superscripts h or

l to indicate the type in period t + 1, given history θt, writing, for instance,

bh (θt) for bt(h
t−1, w(θt), 1, yt, θ

h), the principal’s on-path bonus payment after

history θt, given that θt+1 = θh. By the same token, we write Π(θt) = Πi(θt−1)

for the principal’s expected on-path profit at the beginning of period t, given

the history of type realizations θt and given that θt = θi (i ∈ {h, l}).
Thus, we can write

Π(θt) =d(θt)
[
θtg(n(θt))− w(θt)

]
+ q

(
−bh(θt) + δΠh(θt)

)
+ (1− q)

(
−bl(θt) + δΠl(θt)

)
.

for the principal’s expected on-path profits for a given history of types θt, and

U(θt) =d(θt)
[
w(θt)− n(θt)c

]
+ q

(
bh(θt) + δUh(θt)

)
+ (1− q)

(
bl(θt) + δU l(θt)

)
.

for the agent’s expected on-path utility in period t.

The following figure summarizes the timing within each period:
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P makes offer
to A

Agent
chooses nt

θtg(nt)
consumed

by P

θt+1 realized bt paid
to agent

3 Some Benchmarks

In this section, we analyze a few natural benchmarks against which to measure

our equilibrium. This will help us better understand the role of the non-

contractibility of effort as well as that of the principal’s private information.

3.1 The First Best

Suppose the principal and the agent acted cooperatively so as to maximize

their joint surplus. Our assumptions on the production function g immediately

imply that, in all periods t, the effort chosen would be equal to nFB(θt), with

nFB(θt) being defined by the first-order condition

θtg
′(nFB(θt)) = c.

For the remainder of the paper, we define nFBh ≡ nFB(θh) and nFBl ≡
nFB(θl).

3.2 Verifiable Effort

Now, suppose that the agent’s effort choice was not just observable but also

verifiable, while the principal’s type was her private information and both the

principal and the agent maximized their own respective payoffs. Since the

agent’s effort is verifiable, the principal and the agent can write a binding

contract specifying, in each period t and given any history θt, that wt = 0,

as well as bt = ntc if nt = nFB(θt) and bt = 0 otherwise. This sequence of

contracts implements first-best effort levels, and, since the principal collects

the entire surplus, there is no sequence of contracts generating higher profits.
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3.3 Static Subgame-Perfect Equilibrium

If the game is played only once, the principal will never pay a positive bonus,

whatever the agent’s effort level may have been. Anticipating this, the agent

chooses n1 = 0, implying y1 = 0. In any equilibrium of the repeated game,

either party’s can always guarantee itself this static SPE payoff, which con-

stitutes its minmax-payoff. As we are interested in the best possible PPE

for the principal, it is without loss for us to focus on equilibria in which any

observable deviation triggers this harshest possible punishment.6

3.4 Public Types

Now, let us suppose that the principal’s type is public information, while the

agent’s effort is non-contractible. Thus, we assume that the agent observes

next period’s type at the same time as the principal does, implying that

we here allow the agent to condition his strategy on the principal-histories

rather than only the coarser public histories. In this case, there is no infor-

mational asymmetry; agency problems arise merely on account of the non-

contractibility of effort.

The agent always has the option of rejecting the principal’s offers forever,

guaranteeing him a utility of 0. Therefore, after any history in any equilibrium,

his expected utility will be at least 0, i.e., the following Individual Rationality

constraint must hold, for all histories θt:

U(θt) ≥ 0. (IR)

Furthermore, after pocketing the fixed wages w(θt), the agent must find

it optimal to exert the level of effort he is supposed to exert in equilibrium,

namely n(θt). Thus, his utility when exerting n(θt) must be at least as high

as his utility from exerting any other level of effort. As effort levels are ob-

servable, it is without loss for us to focus on equilibria in which any deviation

by the agent is punished in the harshest possible way, by giving him a contin-

uation utility of 0; in such an equilibrium, therefore, any possible deviation is

dominated by a deviation to an effort level of 0. Thus, the agent’s Incentive

6See Abreu (1988) on the optimality of such simple penal codes.

10



Compatibility Constraint is given by

−n(θt)c+ q
(
bh(θt) + δUh(θt)

)
+ (1− q)

(
bl(θt) + δU l(θt)

)
≥ 0. (IC)

It must also be optimal, after any history θt, for the principal to make the

bonus payments she is supposed to make in equilibrium. Indeed, as effort levels

and bonus payments are not contractible, these must be self-enforcing. Again,

we can focus without loss of generality on equilibria in which the principal is

punished with a continuation profit of 0 whenever she does not pay out the

bonus she is supposed to pay out; her best deviation in this case is to paying

a bonus of 0. This yields the following dynamic enforcement constraints

−bh(θt) + δΠh(θt) ≥ 0 (DEh)

−bl(θt) + δΠl(θt) ≥ 0. (DEl)

It is standard to verify that (DEh) and (DEl) can equivalently be combined

into a single constraint,

−
(
qbh(θt) + (1− q)bl(θt)

)
+ δ

(
qΠh(θt) + (1− q)Πl(θt)

)
≥ 0. (DE)

The (DE) constraint states that the future benefits of honoring the rela-

tional contract must be sufficiently large for the principal that she is willing

to bear today’s costs. Whereas these costs manifest themselves in (expected)

bonus payments, the benefits are provided by the discounted difference be-

tween on- and off-path future profits. Since off-path profits, i.e., profits after

a deviation, are zero, the benefits are identical to expected future profits.

These determine the principal’s commitment in the relationship and conse-

quently her credibility in the relational contract. This credibility problem,

which asks “should one party believe another’s promise?” (Gibbons and Hen-

derson (2012)), is at the heart of most relational contracting models.

Finally, it must be optimal for the principal to offer the equilibrium con-

tract to the agent, i.e., Π(θt) ≥ 0. This, however, is already implied by the

(DE) constraint and our assumption that bonus payments are positive.

Thus, our problem is to maximize Πh(∅), subject to (IR), (IC), and (DE),

through our choice of effort levels n(θt), wage and bonus payments w(θt), bl(θt)

and bh(θt), for all histories θt. The following lemma details some characteris-
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tics of an optimal solution.

Lemma 1 Assume that the firm’s type is publicly observable. Then, there

exists a profit-maximizing equilibrium in which the agent never gets a rent,

that is,

• qbh(θt) + (1− q)bl(θt) = n(θt)c and

• w(θt) = 0 for every history θt.

Furthermore, equilibrium effort only depends on the current state, that is,

n(θt) = n(θt).

The lemma shows that there exists an optimal equilibrium in which the

agent does not get a rent after any history. Indeed, suppose there was a

history θt at which the agent optimally received a rent. In this case, it is

possible to lower the wages w(θt) and to increase the corresponding bonus

payment in the previous period in such a way that profits and constraints

remain unaffected. This operation can be repeated until we reach the first

period, when the principal can expropriate the agent’s entire rent.

Furthermore, the (IC) constraint will bind after any history. Indeed,

suppose to the contrary that it was slack after some history θt. Then, it is

possible to reduce bh(θt) or bl(θt) while increasing w(θt) by the corresponding

amount. This leaves the previous constraints unaffected but relaxes the (DE)

constraint in the current period. As (IC) constraints bind and the agent does

not get a rent after any history, we have w(θt) = 0 after all histories θt.

The lemma also shows that the equilibrium is stationary. Hence, we can

write n(θh) and n(θl) for the respective equilibrium effort levels in any period

t. The reason for this is that, in the case of observable types, every deviation is

observable; there is therefore no reason to burn any surplus on the equilibrium

path of play. Players therefore endeavor to be as close as possible to the first-

best effort level in any period. What is possible, in turn, does not depend on

the history by virtue of our assumption that types are iid across periods. The

first-best target, meanwhile, depends on the history only via the current type.

Note that, as is also the case e.g. in Levin (2003) or MacLeod and Mal-

comson (1989), enforceable effort in any given period does not depend on

the current type but only on the principal’s credibility in the relational con-

tract, that is, her expected future profits. Indeed, current output has already
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been realized and thus is sunk once the principal decides on the bonus pay-

ment. Optimal effort, on the other hand, depends on today’s type. This

tension delivers the intuition for the following proposition, which summarizes

a profit-maximizing equilibrium with public types. There, note that fixing

expected per-period profits, the principal’s credibility is solely determined by

the discount factor δ. Therefore, if δ is high enough, the first best is achievable

and the credibility problem resolved. For intermediate levels of the discount

factor, nFBh is no longer enforceable, while nFBl still is. In this case, the highest

enforceable effort level is chosen in all periods t in which θt = θh, while nFBl
is enforced in all periods τ in which θτ = θl. If the discount factor is so low

that even nFBl can no longer be enforced, the highest enforceable effort level

is enacted in all periods.

Proposition 2 Assume the firm’s type is publicly observable. Then, there

are levels of the discount factor, δ and δ, with 0 < δ < δ < 1, such that

• n(θh) = nFBh and n(θl) = nFBl for δ ≥ δ;

• n(θl) = nFBl < n(θh) < nFBh for δ < δ < δ;

• n(θh) = n(θl) ≤ nFBl for δ ≤ δ.

Note that the principal’s credibility today depends on next period’s type.

Thus, she can credibly commit to a higher bonus payment if tomorrow’s type

is high. If (DE) binds, it is indeed (strictly) optimal to have bh(θt) > bl(θt)

because of the agent’s risk neutrality. In this case, the agent’s compensation is

not only a function of his own performance, but also depends on random events

that are out of his control. This stands in contrast to Holmstrom (1979)’s

informativeness principle, which states that only measures of performance

that reveal information about the effort level chosen by the agent should be

included in the compensation contract.

4 Private Types

In this section, we assume that the principal’s type is her private information.

Thus, she has to be given incentives not to misrepresent her true type. A

straightforward response would be to make the bonus payment independent

of next period’s type; however, while feasible, such an approach is generally
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not optimal. In the following, we will explore how asymmetric information on

future profits affects the properties of a profit-maximizing relational contract.

First, given our equilibrium concept, it is without loss for us to focus on

truth-telling equilibria. Indeed, suppose to the contrary that, in an optimal

equilibrium, the principal did not reveal his private information after some

history θt. As we are looking for an equilibrium in public strategies, this

implies that continuation play after (θt, θh) and (θt, θl) must be identical.

Yet, as only future prospects matter for enforceable actions, this continuation

play would also be available if the principal disclosed her private information.

In truth-telling equilibrium, the principal needs sufficient incentives to

reveal her type in every period. Specifically, after any history θt, it must be

optimal for the principal to pay out bh(θt) (rather than bl(θt)) if tomorrow’s

state is high, and bl(θt) (rather than bh(θt)) if tomorrow’s state is low; other

bonus payments never occur on the path of play and can therefore be deterred

by threatening the principal with a continuation profit of 0. Lest punishment

be triggered, once the principal has paid out bl(θt) at the end of period t, she

can only induce effort nl(θt) in period t+ 1.7

Because, for any strategy choice by the agent, the principal always has

a best response which is a public strategy, we only need to check the prin-

cipal’s incentives to deviate to another public strategy. Furthermore, thanks

to discounting, the One-Deviation principle applies in our setting. Therefore,

if tomorrow’s state is high but the principal pays out the low-type bonus (or

reports θ̂t+1 = θl, in case they are equal) instead, her continuation payoff in

period t+ 1 can be written as

Π̃l(θt) =θhg(nl(θt))− wl(θt)

+ q
(
−blh(θt) + δΠlh(θt)

)
+ (1− q)

(
−bll(θt) + δΠll(θt)

)
,

where the second superscript describes the type in period t+ 2.

By the same token, if tomorrow’s state is low but the principal pays out

7Note that a formal mechanism to transmit messages would not be required, whenever
the size of the bonus depends on tomorrow’s type, i.e. bh(θt) 6= bl(θt). In this case, bonus
payments serve as a message and also determine next period’s equilibrium effort. In our
equilibrium, whenever the principal’s report in period t + 1 does not correspond to the
bonus having been paid in period t, punishment is triggered. When bh(θt) = bl(θt) while
nh(θt) 6= nl(θt), a message is needed to tell the agent which level of effort to choose in
period t+ 1.
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the high-type bonus instead, her continuation payoff in period t+ 1 is

Π̃h(θt) =θlg(nh(θt))− wh(θt)

+ q
(
−bhh(θt) + δΠhh(θt)

)
+ (1− q)

(
−bhl(θt) + δΠhl(θt)

)
.

Therefore, the principal is willing to tell the truth in equilibrium following

history θt if and only if

−bh(θt) + δΠh(θt) ≥ −bl(θt) + δΠ̃l(θt) (TTh)

−bl(θt) + δΠl(θt) ≥ −bh(θt) + δΠ̃h(θt). (TTl)

As Π̃l(θt) = Πl(θt)+θhg(nl(θt))−θlg(nl(θt)) and Π̃h(θt) = Πh(θt)−θhg(nh(θt))+

θlg(nh(θt)), we can rewrite these constraints as follows:

−bh(θt) + δΠh(θt) ≥ −bl(θt) + δΠl(θt) + δg(nl(θt))
(
θh − θl

)
(TTh)

−bl(θt) + δΠl(θt) ≥ −bh(θt) + δΠh(θt)− δg(nh(θt))
(
θh − θl

)
. (TTl)

Thus, the principal’s objective is to maximize Π(θ1) = θhg(n(θ1)) −
w(θ1) + q

(
−bh(θ1) + δΠh(θ1)

)
+ (1− q)

(
−bl(θ1) + δΠl(θ1)

)
, where θ1 = θ1 =

θh, subject to (DEh), (DEl), (TTh), (TTl), (IR) and (IC) at each history θt.

In the following subsection, we shall give some preliminary results concerning

the structure of an optimal equilibrium, before we turn to the presentation of

our main results.

4.1 Preliminaries

The object of this subsection is to simplify the problem by eliminating some

of the constraints while deriving some structural properties of an optimal

equilibrium. We begin with the simple observation that (DEh) can be omitted.

Lemma 2 For any history θt, the (DEh) constraint can be omitted.

Proof. Adding (DEl) and (TTh) gives−bh(θt)+δΠh(θt) ≥ δg(nl(θt))
(
θh − θl

)
.

Since the right hand side is positive, this implies (DEh). �

The following lemma summarizes some structural properties of an optimal

equilibrium.
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Lemma 3 There exists an optimal equilibrium with the properties that, for

every history θt,

• U(θt) = 0,

• Πh(θt) ≥ Π̃l(θt),

• bh(θt) ≥ bl(θt),

• the (TTl) constraint can be omitted,

• n(θt)c = qbh(θt) + (1− q)bl(θt) and w(θt) = 0.

Thus, as in the case of public types, the agent does not get a rent after

any history. The intuition for this result remains the same: Front-loading

rent payments can only relax the (DE)-constraint, and once the first period

is reached, the agent’s rent can be expropriated via the fixed wages w(θ1).

Moreover, the principal’s bonus payment is weakly higher if the agent’s pro-

ductivity tomorrow, and hence the value of continuing the relationship for

the principal, is higher. Consequently, she will never want to claim that the

agent’s productivity tomorrow is higher than it actually is; i.e., the (TTl) con-

straint can be omitted. Thus, on the principal’s side, we are left with only the

(DEl) and (TTh) constraints. A rather similar argument to the case of public

types then establishes that the (IC)-constraint will bind and that w(θt) = 0

after all histories θt.

The following lemma shows that the (DEl) and (TTh) constraints can be

combined into one.

Lemma 4 Maximum profits in the problem in which (TTh) and (DEl) are

replaced by the following constraint (EC) equal maximum equilibrium profits:

−n(θt)c+ δ
(
qΠh(θt) + (1− q)Πl(θt)

)
≥ δqg(nl(θt))

(
θh − θl

)
. (EC)

Optimal bonus payments are given by bh(θt) = bl(θt) = n(θt)c if

n(θt)c ≤ δΠl(θt), and bh(θt) = 1
q

[
n(θt)c− δ(1− q)Πl(θt)

]
> δΠl(θt) = bl(θt)

otherwise.
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The left-hand side of the (EC)-constraint is identical to the left-hand side

of the (DE)-constraint with public types. It weighs the cost of compensat-

ing the agent for his effort costs, n(θt)c, against discounted expected future

profits, δ
(
qΠh(θt) + (1− q)Πl(θt)

)
, which determine the principal’s stakes in

the relationship. With public types, this left-hand side had to exceed 0 for

the principal to be willing to incur the cost of compensating the agent for his

effort costs. With private types, by contrast, this has to be weakly greater

than δqg(nl(θt))
(
θh − θl

)
≥ 0, which is an expression for the principal’s in-

formation rent. Indeed, if (DE) constraints bind, the principal would like to

transfer her entire future profits to the agent. But this is not feasible if the

principal’s type tomorrow is θh (which happens with probability q), because

she always has the option of falsely claiming that the type is θl. If she does

so, she will get θhg(nl(θt)) in the next period, rather than just θlg(nl(θt)),

which determines the bonus the principal is supposed to pay. As (EC) shows,

it is on account of this information rent that a given level of effort is harder

to implement with private types.

Put differently, the agency problem here consists not only in the non-

verifiability of the agent’s performance measures, but also in the necessity of

preventing the principal from claiming her type to be lower than it actually

is in order to save on her bonus payments. Lying generally does not come for

free, though, because only the respective low-type effort can be implemented

in the subsequent period. Thus, for the same reason as in the case of public

types, it can still be optimal to have bh(θt) > bl(θt), despite the principal’s

temptation to lie. Now, the principal’s tradeoff boils down to a comparison

of today’s benefits of a deviation (a lower bonus payment) with tomorrow’s

costs (a lower output). This aspects adds another dimension to the credibility

problem typical for relational contracts. Indeed, the principal’s credibility

is reduced by the information rent she can always secure herself because of

her private information. As we shall see below, tweaking tomorrow’s costs of

lying, by adjusting the output level given tomorrow’s type is low, can be a

way of boosting the principal’s credibility today.

While effort dynamics in the case of public types are completely sta-

tionary (see Lemma 1), this is no longer the case with private types, as the

following lemma shows. In order to state this lemma, we define, for every
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history θt := (θh, θ2, θ3, · · · , θt), the function

i(θt) :=

{
0 if θt = θh

max
{
ι ∈ N : θt−ι+n = θl ∀n ∈ {0, · · · , ι}

}
+ 1 if θt = θl

,

which indicates the number of consecutive low periods immediately preceding,

and including, period t along a given history θt.

Lemma 5 There exists an optimal equilibrium with the property that, for

every two histories θt and θ̃t̃, nh(θt) = nh(θ̃t̃). Furthermore, for every history

θt, nl(θt) = nli(θt).

Proof. Consider an optimum satisfying the properties of Lemmas 3 and

4. Suppose that there exists a history θt such that Πh(θt) < maxθ̂τΠ
h(θ̂τ ).

Replace the continuation play following
(
θt, θh

)
by the continuation play fol-

lowing
(
θ̃, θh

)
, where θ̃ ∈ argmaxθ̂τΠ

h(θ̂τ ). By virtue of our iid assumption,

this is feasible. This increases profits and relaxes some (EC) constraints with-

out tightening any previous ones. This establishes that Πh(θt) = Π
h

for all θt

(if two different continuation plays lead to argmaxθ̂τΠ
h(θ̂τ ), we select one to

be played after all histories
(
θt, θh

)
). Therefore, there exists an optimum in

which for any history θt, nh(θt) = nh and nl(θt) = nli(θt). �

The lemma shows the optimal effort level continues to be the same in

all high periods. The reason is that there is no trade-off with respect to

effort levels in high periods. Choosing them closer to the first-best benchmark

both increases the objective and relaxes the constraint; indeed, making a high

period more attractive makes the principal less inclined falsely to claim to be

in a low period. The effort level in a low period, by contrast, depends on the

history, albeit only via the distance of the current period to the last previous

high period. Indeed, there is a trade-off with respect to the effort level in a low

period. Making a low period less attractive lowers the objective but relaxes

the constraint as it makes it less enticing for the principal falsely to claim to

be in a low period; by making it less attractive to be in a low period tomorrow,

one can thus enhance the principal’s credibility today. Thus, the optimal effort

level in a given low period depends on the optimal effort level today, leading

to the dynamics described in the lemma. In the following, we shall write

nh := n(θt) for all θt such that θt = θh; we shall write nli = nli(θt) = n(θt+1)

for all θt+1 = (θt, θl). By the same token, we shall write Πh and Πl
i for the

corresponding optimal profits.
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Armed with these results, we can rewrite our problem. The objective is

to choose
(
nh, nli

)
i∈N so as to maximize

Πh =
1− δ(1− q)

1− δ
(
θhg(nh)− nhc

)
+

1− δ(1− q)
1− δ

δ(1−q)
∞∑
i=0

(δ(1− q))i
(
θlg(nli)− nlic

)
,

subject to

−nhc+ δ
(
qΠh + (1− q)Πl

0

)
≥ δqg(nl0)

(
θh − θl

)
. (ECh)

and

−nlic+ δ
(
qΠh + (1− q)Πl

i+1

)
≥ δqg(nli+1)

(
θh − θl

)
(ECli)

for all i ∈ N.

The following two lemmas summarize further aspects of an optimal equi-

librium: Effort levels are always weakly below first-best levels, and profits are

weakly increasing in the discount factor δ.

Lemma 6 There exists an optimal equilibrium with the property that

nli ≤ nFBl and nh ≤ nFBh .

Lemma 7 For every history θt, maximal profits Π(θt) are weakly increasing

in δ. Furthermore, a higher δ relaxes (EC) constraints.

4.2 The Optimality of Implicit Downsizing Costs

We are now ready to state our main results. Firstly, if the discount factor is

close enough to 1, the first best can be achieved.

Proposition 3 There exists a δ ∈ (0, 1) such that for all δ ≥ δ, the unique

optimal equilibrium implies first-best effort levels nFBh /nFBl .

To get an intuition for the forces at play, recall that the (EC)-constraints

in fact capture two distinct effects. On the one hand, there is the classical

effect coming from the dynamic-enforcement constraints that the principal

would never be willing to make a bonus payment exceeding the discounted

expected value of the continuation of the relationship to her. As we have seen

above, this constraint can only ever bind in our setting if the principal observes
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the next period to be low (see Lemma 2). On the other hand, there is the

need to incentivize the principal to tell the truth. Indeed, a higher enforceable

bonus when next period is high may tempt the principal to lie in order to

reduce her bonus payments in the current period. A straightforward response

to this temptation is a reduction of bh(θt), accompanied by an appropriate

increase of bl(θt) to leave incentives for the agent unaffected. This, however,

is restricted by δΠl, which is the most the principal would be willing to pay

given that tomorrow’s type is low. Yet, as δ, and hence δΠl, increase, it

becomes possible to increase bl without violating (DEl); this in turn reduces

the principal’s incentives to lie. The proposition now shows that, when δ is

close enough to 1, the (EC) constraint will hold, and hence the principal will

not have any incentives to lie or to renege on her bonus payment.

Our next proposition characterizes an optimal outcome, given that the

discount factor is too low to implement nFBh but high enough to implement

nFBl .

Proposition 4 There exist discount factors δ and δ, with 0 < δ < δ < 1,

such that, in an optimal equilibrium, for δ ∈ (δ, δ), nh and nl0 are inefficiently

low: nl0 < nFBl < nh < nFBh , and, for all i ≥ 1, nli = nFBl .

Note that, for the first-best solution, the (ECh) and (ECli) constraints

are identical but for the first term, which is nFBh and nFBl , respectively. Thus,

as δ decreases, (ECh) starts binding before the (ECli) constraints do. When

this happens, nFBh is no longer implementable and nh is hence reduced below

first-best levels. Yet, as Proposition 4 shows, nl0 is reduced below nFBl as well,

even though (ECl0) does not bind. This “overshooting” relaxes (ECh) and

thus allows for a smaller reduction in nh than would otherwise be necessary.

Because the principal needs to be dissuaded from claiming that next

period’s type is low when it is in fact high, low periods need to be rendered

less attractive, and, in particular, those low periods that follow periods in

which the principal needs a lot of credibility, i.e., high periods. A natural,

surplus-neutral, way of achieving this goal would be to force the principal

to make a transfer to the agent if he claims next period’s type to be low.

However, as Proposition 4 shows, this would not be optimal in our setting,

as such a transfer would hit an on-path principal who truthfully claimed next

period’s type to be low in the same way as it would hit a lying principal. Put

differently, such a transfer would relax (TTh), but tighten (DEl) to the same
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extent. Therefore, (EC) constraints, which are combinations of the respective

(TTh) and (DEl) constraints, would not be relaxed.

The distortion of effort levels as proposed by Proposition 4, which can be

interpreted as implicit downsizing costs, hits a lying off-path principal harder

than a truthful principal. Indeed, when lying, the principal’s profits are de-

creased by θhg′ − c on the margin, while they are only decreased by θlg′ − c
when she is telling truth. Thus, the game exhibits memory, and the equilib-

rium is not sequentially optimal, in that nFBl
(
> nl0

)
would be implemented if

the game newly started with a low state. This contrasts with the finding in

Li and Matouschek (2013), where every optimal equilibrium was sequentially

optimal. In our iid model, this distortion in effort levels only lasts a single pe-

riod, and nli = nFBl for i > 0. This is due to two reasons. First, reducing nli for

i > 0 would not allow to further increase nh because the resulting distortions

in later periods would hit on-path and off-path principals alike. Second, for

discount factors above δ, (ECl) constraints do not bind and first-best effort

levels are feasible. Thus, implicit downsizing costs indeed optimally arise on

the equilibrium path.

5 Persistent Shocks

So far, we have assumed that the principal’s types across periods are iid. In

this section, we show that implicit downsizing costs may also obtain if shocks

are permanent. Specifically, let us assume that, as before, the principal starts

out with a high type, but that the type remains high for another period with

time-invariant probability q. With probability 1− q, the type switches to low

and remains low forever. In all other aspects, the setup is as before.

As the problem conditional on the type still being high is stationary,

it is without loss for us to restrict attention to equilibria in which actions

do not depend on calendar time. Therefore, equilibrium high-type effort is

constant, whereas low-type effort depends on the distance in time to the (now

permanent) switch from high to low. Thus, equilibrium profits can be written

Πh = θhg(nh)− qbh − (1− q)bl0 − wh + δqΠh + δ(1− q)Πl
0

Πl
i = θlg(nli)− bli+1 − wli + δΠl

i+1,
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where wh and wli are defined analogously to nh and nli.

The objective is to maximize Πh, subject to the following constraints.

First, the dynamic enforcement (DE) constraints must be satisfied for bh and

all bli:

−bh + δΠh ≥ 0 (DEh)

−bli + δΠl
i ≥ 0∀i ≥ 0. (DEli)

As long as the principal has not announced a switch to the low state, the

following truth-telling constraints must hold:

−bh + δΠh ≥ −bl0 + δΠ̃l
0 (TTh)

−bl0 + δΠl
0 ≥ −bh + δΠ̃h, (TTl)

where

Π̃l
i = θhg(nli)−bli+1−wli+δ

[
qΠ̃l

i+1 + (1− q)Πl
i+1

]
= Πl

i+
∞∑
τ=0

(δq)τ g(nlτ )(θ
h−θl)

and

Π̃h = θlg(nh)− qbh − (1− q)bl0 − wh + δΠl
0 = Πh − (θh − θl) g(nh)

1− δq
.

Note that our formulation of Π̃l
i takes into account that the principal does not

renege after having falsely announced a switch to state θl in the past. This

requires −bli + δΠ̃l
i ≥ 0, which holds given the (DEli) constraints and, as can

be shown, given Πl
i < Π̃l

i.

Finally, the (IC) and (IR) constraints are as before.

The proofs of Lemmas 2 and 3 go through essentially unchanged. This

implies, inter alia, that bh ≥ bl0, n
hc = qbh + (1 − q)bl0, nlic = bli+1 and that

(TTh) and (DEli) are the relevant constraints.

The proof of Lemma 4 goes through essentially unchanged as well. There-

fore, we can equivalently replace (TTh) and (DEl0) by the following (ECh)

constraint
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−nhc+ δqΠh + δ (1− q) Πl
0 ≥

(
θh − θl

) ∞∑
i=0

(δq)i+1 g(nli). (ECh)

We furthermore need to keep track of

−nlic+ δΠl
i+1 ≥ 0 (DEli)

for all i ≥ 0. The proof of Lemma 6 goes through unchanged as well.

As before, the right hand side of (ECh) expresses the information rent

the principal can secure herself by falsely claiming that the state is low. With

iid shocks, the principal gets θhg(nl0) after a lie whereas the agent believes

she gets θlg(nl0), the principal’s informational advantage extending but to the

next period. Here, by contrast, her informational advantage extends to the

first (random) period after her lie in which the state indeed switches to low.

As the principal maintains her informational advantage from one period to

the next with probability q, the expression for the information rent is now

δq
(
θh − θl

)∑∞
i=0 (δq)i g(nli), while it was δq

(
θh − θl

)
g(nl0) before.

To show that, as before, constraints are tightened for lower values of δ,

we prove two new lemmas. Our first lemma shows that the agent’s effort level

is weakly higher before a shock.

Lemma 8 The effort levels satisfy nh ≥ supi∈N n
l
i.

We can now prove the following:

Lemma 9 Maximal profits Πh and Πl
i (i ∈ N) are weakly increasing in δ.

Furthermore, a higher δ relaxes the (ECh) and (DEli)-constraints.

As δ → 1, the left-hand sides of the (ECh) and (DEli)-constraints for

first-best effort levels diverge to infinity, while the right-hand side of (ECh)

converges to q
1−q (θ

h − θl)g(nFBl ) < ∞. Thus, if δ is sufficiently large, the

first-best effort levels nFBh and nFBl can be implemented. As δ leaves this

range, it is of interest whether (ECh) or (DEli) constraints start binding

first. Let δl :=
nFBl c

θlg(nFBl )
denote the discount factor at which (DEli)-constraints

start binding for first-best effort levels, and δh the corresponding discount

factor for the (ECh)-constraint. It can be shown that (ECh) binds first if

23



q <
θlg(nFBl )(nFBh −nFBl )

θhnFBl (g(nFBh )−g(nFBl ))
; i.e. in this case, δl < δh. For this case, the following

proposition shows that overshooting of the effort reduction may arise with

persistent shocks as well.

Proposition 5 Assume q <
θlg(nFBl )(nFBh −nFBl )

θhnFBl (g(nFBh )−g(nFBl ))
and δ ∈ [δl, δh). Then, nh <

nFBh . Furthermore, for all i ∈ N, nli < nli+1 < nFBl , with lim
i→∞

nli = nFBl .

Whereas we still observe overshooting, the recovery is gradual and never

complete. Recall that in the case of iid shocks, having a distortion is optimal

one period after the announcement of a low state because the off-path costs

(i.e. if the state is in fact high) are larger than the on-path costs (i.e. if the

state is indeed low). Because states are iid, though, costs are the same on

path and off path in subsequent periods; there is thus no gain to imposing

further distortions, as the agent reverts to telling the truth after one lie by

the One-deviation principle.

With persistent shocks, however, falsely claiming that the type is low

forces the principal to stick to announcing the low state forever thereafter. As,

in expectation, the costs imposed by a distortion in effort in any future period

are higher off path than on path as there always is some chance that the type

is still high after T periods (for any T ), it is optimal to keep distorting in all

future periods, as, on account of the concave production function g, it is better

to smooth out distortions. The further in the past the first announcement of

the low state lies, though, the more likely it becomes that the state will indeed

have switched to low in the meantime; i.e., the difference in off-path vs. on-

path costs imposed by the distortion decreases. It is therefore optimal to

distort the less the further past the announcement of the switch to the low

state one is. As the expected cost difference becomes negligible over time, the

distortion eventually vanishes at a rate that is decreasing in the probability of

remaining in the high state, q =
θlg′(nli+1)−c
θlg′(nli)−c

. As with iid shocks, our optimal

self-enforcing contract is thus not sequentially optimal since nFBl would satisfy

all (DEli) constraints.

6 Conclusion

In this paper, we have shown that the phenomenon of implicit downsizing

costs can be explained as an optimal commitment device for a principal not
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opportunistically to misrepresent her private information. In order to prevent

downsizing when it is not necessary, an optimal relational contract imposes a

cost on the principal whenever she announces bad news. This in turn enhances

the principal’s credibility and profits.

Appendix

Proof of Lemma 1

We shall first show that there exists an optimal equilibrium such that U(θt) =

0 for all histories θt. If U(θ1) > 0, reduce w(θ1) by U(θ1). For t > 1, assume

to the contrary that, in an optimal equilibrium, U i(θt) > 0 for some history θt

and i ∈ {h, l}. Now, reduce wi(θt) by U i(θt) and increase the respective bonus

in the previous period, bi(θt), by δU i(θt). Since −bi(θt) + δΠi(θt) and bi(θt) +

δU i(θt) remain unchanged, this change leaves the agent’s (IC) constraints

as well as all of the principal’s constraints at history θt and all predecessor

histories unaffected. Furthermore, the principal’s profits at history θt as well

as in all predecessor histories remain unchanged. We can thus without loss

focus on equilibria such that U(θt) = 0 for all histories θt.

Now, suppose that there exists a history θτ after which the (IC) constraint

does not bind. Note that a non-binding (IC) constraint implies that either

bh(θτ ) > 0 or bl(θτ ) > 0. Thus, there exists an ε > 0 such that, if either

bh(θτ ) is reduced by ε
q

or bl(θτ ) by ε
1−q , the (IC) constraint is still satisfied.

If w(θτ ) is at the same time increased by ε, the (DE) constraint for history

θτ is relaxed, and all constraints for all other histories θt are unaffected by

this change. This adjustment potentially increases profits if (DE) for history

θτ binds, and leaves profits unaffected if (DE) for history θτ is slack, hence is

optimal. Thus, we have shown that there exists an optimal equilibrium with

the property that w(θt) = 0, U(θt) = 0, and qbh(θt) + (1 − q)bl(θt) = n(θt)c

for all histories θt.

To prove the final part of the Lemma, we first rewrite the (DE) constraint:

−n(θt)c+ δ
(
qΠh(θt) + (1− q)Πl(θt)

)
≥ 0. (DE)

In addition, note that effort levels will never exceed the first best (oth-

erwise, a reduction would increase profits without violating any of the con-
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straints). Now, assume that there are histories θτ̃ and θτ , with nh(θτ̃ ) >

nh(θτ ). If the profits being produced in the continuation play following
(
θτ , θh

)
are higher, it is possible to implement nh(θτ̃ ) with the continuation play fol-

lowing
(
θτ , θh

)
. In this case, the principal can therefore increase her profits

following history
(
θτ , θh

)
by increasing the current period’s effort level to

nh(θτ̃ ), while leaving the continuation play unchanged. Now, suppose that

it is not possible to implement nh(θτ̃ ) with the continuation play following(
θτ , θh

)
. This implies that the profits created by the continuation play follow-

ing
(
θτ , θh

)
are lower than the continuation play following

(
θτ̃ , θh

)
. Further-

more, because nh(θτ̃ ) is enforceable, it is possible to replace the continuation

play following
(
θτ , θh

)
with the continuation play following

(
θτ̃ , θh

)
, thereby

relaxing the (DE) constraint in τ . It thus becomes possible to increase nh(θτ )

to nh(θτ̃ ). This increases both the principal’s current and future profits. A

similar argument applies to the low state. Hence, equilibrium effort only de-

pends on the current state. �

Proof of Proposition 2

To ease the notational burden, we write nh ≡ n(θh) and nl ≡ n(θl). The

Lagrangian for the firm’s problem can be written as

L =
(
θhg(nh)− nhc

)(
1 +

δq

1− δ

)
+
(
θlg(nl)− nlc

) δ(1− q)
1− δ

+ λDEh

[
−nhc+

δ

1− δ
[
q(θhg(nh)− nhc) + (1− q)(θlg(nl)− nlc)

]]
+ λDEl

[
−nlc+

δ

1− δ
[
q(θhg(nh)− nhc) + (1− q)(θlg(nl)− nlc)

]]
,

where λDEi denotes the Lagrange multiplier associated with the constraint

(DEi), for i ∈ {l, h}.
By strict concavity of g, the first-order conditions are both necessary and

sufficient for an optimum. By the Inada Conditions on g, optimal effort levels

are interior, and hence characterized by ∂L
∂ni

= 0, as well as λDEi
∂L

∂λDEi
= 0, for

both i ∈ {h, l}. One computes

∂L
∂nh

=
(
θhg′(nh)− c

) [
1 +

δ

1− δ
q(1 + λDEh + λDEl)

]
− λDEhc;
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∂L
∂nl

=
(
θlg′(nl)− c

) δ

1− δ
(1− q)(1 + λDEh + λDEl)− λDElc.

As nh ≥ nl at an optimum, we know that λDEh = 0 implies λDEl = 0.

As our system of equations characterizing the solution
(
nh, nl, λDEh , λDEl

)
is

(jointly) continuous in
(
nh, nl, λDEh , λDEl , δ

)
, the solutions

(
nh, nl, λDEh , λDEl

)
can be written as continuous functions of δ. Thus, profits Πh and Πl are con-

tinuous in δ.

The left-hand sides of the (DEi) constraints are increasing in δ,8 hence

maximum enforceable effort increases in δ as well.

For δ → 1, (DEi) are satisfied for first-best effort levels, since θg(nFB(θ))−
nFB(θ)c > 0 for both θ ∈ {θh, θl}. Thus, there exists a δ̄ ∈ [0, 1) such that

λDEh = λDEl = 0 for all δ > δ̄. For δ = 0, no positive effort can be enforced.

Thus, δ̄ > 0. Moreover, by continuity of the (DEi)-constraints in δ, for every

pair of effort levels (nh, nl) between zero and the respective first-best effort

levels nFBl and nFBh , there exists a discount factor δ(nh, nl) such that the con-

straint (DEh) holds for δ ≥ δ(nh, nl) and is violated for δ < δ(nh, nl). Set

δ̄ = δ(nFBh , nFBl ). Since nFBl < nFBh , (DEl) holds with slackness at nl = nFBl
for δ = δ̄. Let nh(δ) be defined by θhg′(nh(δ)) = c1−δ(1−q)

δq
; as g′ is continu-

ous, strictly decreasing and takes on all values in (0,∞), nh(δ) exists and is

unique; furthermore, the Inverse Function Theorem implies that it is a con-

tinuous function of δ. As the partial derivative of (DEh) with respect to nh

is always strictly negative at nh = nFBh , we have that nh(δ) < nFBh . Clearly,

the solution n̂h to the optimization problem in which only (DEh) is imposed

entails n̂h ∈ [nh(δ), nFBh ]. Direct computation shows the partial derivative of

(DEh) with respect to nh to be strictly negative on (nh(δ), nFBh ), while its

partial derivative with respect to δ is strictly positive and, since δ ≤ δ̄ < 1,

bounded. Therefore n̂h is a continuous function of δ, and thus, by continuity

of (DEl) in (nh, δ), there exists a δ ∈ (0, δ̄) such that (DEl) continues to hold

with slackness for all δ ∈ (δ, δ̄]. This implies nl = nFBl < nh < nFBh . For

δ ≤ δ, both (DE) constraints bind, and hence nh = nl. �

Before we prove Lemma 3, we first prove the following auxiliary lemma.

Lemma 10 For any history θt with nh(θt) 6= nl(θt), (TTh) and (TTl) are not

both binding.

8This can be shown formally by an argument analogous to the one underlying the proof
of Lemma 7.
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Proof of Lemma 10.

Assume there is a history θτ where both constraints bind simultane-

ously even though nh(θτ ) 6= nl(θτ ). Then, (TTh) implies bh(θτ ) = bl(θτ ) +

δΠh(θτ ) − δΠ̃l(θτ ). Plugging this into the binding (TTl) constraint yields

g(nl(θτ ))
(
θh − θl

)
= g(nh(θτ ))

(
θh − θl

)
. Since θh − θl > 0 and g is strictly

increasing, this contradicts the claim that both constraints bind for nh(θτ ) 6=
nl(θτ ). �

Proof of Lemma 3

We start with proving the first two parts. Suppose to the contrary that there

exists a history θt of length t ≥ 1 and an equilibrium such that, following

history θt, the principal is strictly better off in this equilibrium than in any

equilibrium satisfying points 1.-2. We show by construction that this cannot

be the case.

1. Assume that, in an optimal equilibrium, U i(θt) > 0, i ∈ {h, l} for some

history θt of length t. Reduce wi(θt) by U i(θt) and increase the respective

bonus in the previous period, bi(θt), by δU i(θt). Since −bi(θt) + δΠi(θt)

and bi(θt) + δU i(θt) remain unchanged, this change leaves the agent’s

(IC) constraints as well all of the principal’s constraints at history θt and

all predecessor histories unaffected. Furthermore, the principal’s profits

at history θt as well as in all predecessor histories remain unchanged.

Repeat this step for all histories of length t and of length t+ 1.

2. Assume that Πh(θt) < Π̃l(θt). Replace play after (θt, θh) by play after

(θt, θl). This leads to on-path profits of Π̂h(θt) = Π̃l(θt). Set bhnew(θt) =

blnew(θt) = n(θt)c, while increasing w(θt) by δq
(

Π̂h(θt)− Πh(θt)
)

+

q
(
bhold(θ

t)− bhnew(θt)
)

+ (1 − q)
(
blold(θ

t)− blnew(θt)
)
. (By Step 1. and

the fact that (IC) at history θt holds, this increase is weakly larger than

qδ
(

Π̂h(θt)− Πh(θt)
)

.) (TTh), (TTl) and (IC) at history θt now hold

with equality. Previous constraints remain unchanged, with the excep-

tion of previous (IC)-constraints, which are relaxed. It remains to be

shown that the (DEl)-constraint at history θt continues to hold. As the

proof of Lemma 2 shows, the fact that (DEl) and (TTh) previously held
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at history θt, together with Step 1, implies

−n(θt)c+ δ
{
q
[
Πh(θt)− (θh − θl)g(nl(θt))

]
+ (1− q)Πl(θt)

}
≥ 0.

As Πh(θt) < Πl(θt) + (θh − θl)g(nl(θt)) = Π̃l(θt), this implies −n(θt)c+

δΠl(θt) ≥ 0, which was to be shown.

Furthermore, we can show (for later use) that, for histories θt such that

nh(θt) ≤ nl(θt), Πl(θt) ≥ Π̃h(θt). To the contrary, assume that Πl(θt) <

Π̃h(θt). Replace play after (θt, θl) by play after (θt, θh). This leads to on-

path profits of Π̂l(θt) = Π̃h(θt). Set bhnew(θt) = blnew(θt) = n(θt)c, while

increasing w(θt) by δ(1− q)
(

Π̂l(θt)− Πl(θt)
)

+ q
(
bhold(θ

t)− bhnew(θt)
)

+

(1 − q)
(
blold(θ

t)− blnew(θt)
)
. (TTh), (TTl) and (IC) at history θt now

hold with equality. Previous constraints remain unchanged, with the

exception of previous (IC)-constraints, which are relaxed. It remains to

be shown that (DEl)-constraint at history θt continues to hold. As the

proof of Lemma 2 shows, the fact that (DEl) and (TTh) previously held

at history θt, together with Step 1, implies

−n(θt)c+ δ
{
q
[
Πh(θt)− (θh − θl)g(nl(θt))

]
+ (1− q)Πl(θt)

}
≥ 0.

As Πl(θt) < Πh(θt)− (θh − θl)g(nh(θt)) = Π̃h(θt), this implies

−n(θt)c + δΠh(θt) ≥ δ(θh − θl)
(
qg(nl(θt) + (1− q)g(nh(θt))

)
.

As nh(θt) ≤ nl(θt), this implies −n(θt)c+ δΠh(θt) ≥ δ(θh− θl)g(nh(θt)),

or −n(θt)c+ δΠ̂l(θt) ≥ 0, which was to be shown.

After Operation 2., we have to repeat Operations 1. As Operations 1. leave

profits and effort levels unchanged, there is no need to repeat Operation 2.

after that. Furthermore, we can repeat these operations for all histories of

length t and after that for all histories of length t − 1, t − 2, · · · . Finally,

assume U(θ1) > 0. Reducing w(θ1) by U(θ1) increases Π(θ1) and only affects

the agent’s first-period (IR) constraint, which continues to hold.

To show that bh(θt) ≥ bl(θt) for all histories θt, assume to the contrary

that there exists a history θt such that bh(θt) < bl(θt). Because of part 2, this

implies that (TTh) is slack. Increase bh(θt) by a small ε > 0 and reduce bl(θt)

by q
1−qε. This leaves all (IC) constraints unaffected and relaxes the (DEl)

and (TTl) constraints at history θt. (TTh) is tightened, while nonetheless
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remaining slack as long as bh(θt) < bl(θt). Finally, all constraints and profits

at predecessor histories remain unchanged.

We now show that the (TTl) constraint can be omitted. If nh(θt) ≤
nl(θt), this follows immediately from the fact that bh(θt) ≥ bl(θt) and Πl(θt) ≥
Π̃h(θt). So suppose that nh(θt) > nl(θt), and suppose that the (TTl) constraint

binds. By Lemma 10, this implies that the (TTh) constraint is slack. We can

therefore increase bh(θt) by a small ε > 0 while decreasing w(θt) by qε (or, if

bl(θt) > 0, we can decrease bl(θt) > 0 by q
1−qε instead). This leaves all previous

constraints and profits unaffected yet relaxes the current (IC) constraint (or

leaves the current (IC) constraint unchanged and relaxes the current (DEl)

constraint).

Finally, assume to the contrary that there exists a history θt such that

−n(θt)c + qbh(θt) + (1 − q)bl(θt) > 0. If bh(θt) > bl(θt), reduce bh(θt) by a

small ε > 0 and increase w(θt) by qε. If bh(θt) = bl(θt), reduce bh(θt) and

bl(θt) by a small ε > 0 and increase w(θt) by ε. In the first case, this relaxes

the (TTh) constraint at history θt; in the second case, it relaxes the (DEl)

constraint at history θt. Profits, the agent’s utility and all other constraints

at history θt or its predecessor histories are unaffected. Because U(θt) =

w(θt)− n(θt)c+ qbh(θt) + (1− q)bl(θt) = 0, a binding (IC) constraint implies

that w(θt) = 0 for all histories θt. �

Proof of Lemma 4

By Lemma 3, we can without loss focus on equilibria in which

n(θt)c = qbh(θt) + (1− q)bl(θt) (1)

at every history θt. Using (1) and multiplying (TTh) with q and adding it to

(DEl) yields (EC).

To prove that (EC) implies (TTh) and (DEl) given (1), assume that

we are at an optimum satisfying the properties of Lemma 3 and that (EC)

holds. We shall now show that it is always possible to find non-negative bonus

payments bh(θt) and bl(θt) such that (1) holds, and that (DEl) and (TTh) are

both satisfied. Toward this purpose, we set bl(θt) = min
{
δΠl(θt), n(θt)c

}
≥ 0.

First suppose that n(θt)c ≤ δΠl(θt). In this case, we set bh(θt) = n(θt)c.

Now, (DEl) will trivially hold (with slackness if n(θt)c < δΠl(θt)). Using
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bh(θt) = n(θt)c in (TTh) yields δΠh(θt) ≥ δg(nl(θt))
(
θh − θl

)
+δΠl(θt), which

is implied by the second part of Lemma 3. Now suppose that n(θt)c > δΠl(θt).

In this case, we set bh(θt) = 1
q

[
n(θt)c− δ(1− q)Πl(θt)

]
> 0. Clearly, (DEl)

will trivially hold with equality (because bl(θt) = δΠl(θt)). Substituting bh(θt)

into (TTh) yields 1
q

times (EC). �

Proof of Lemma 6

Consider an optimum satisfying the properties of Lemmas 3, 4 and 5. Suppose

there exists a history θt such that n(θt) > nFB(θt). Reduce n(θt) by a small

ε > 0. This increases profits and relaxes the (EC) constraints at all predecessor

histories. �

Proof of Lemma 7

Consider a given discount factor δ̂ and the associated sequence of optimal ac-

tions
(
nh(δ̂), nli(δ̂)

)
i∈N

. We first show that a higher δ relaxes (EC) constraints;

i.e., for any discount factor δ̃ > δ̂, previously optimal actions nh(δ̂) and nli(δ̂)

continue to satisfy the (EC) constraints. We show this by induction over the

number of periods, starting from the first period, in which the discount factor

rises from δ̂ to δ̃. First, suppose only the discount factor between the first

and the second period rises. The (EC) constraint in the first period can be

written as −nhc + δq
[
Πh − g(nl0)

(
θh − θl

)]
+ δ(1 − q)Πl

0 ≥ 0. In Lemma 3

we showed that, at our optimum, Πh(θt) ≥ Πl(θt) + g(nl(θt))
(
θh − θl

)
for all

histories θt. Since Πl(θt) ≥ 0, the term in square brackets is non-negative.

Hence, (EC) in period 1 becomes slacker, and the actions that were optimal

at the discount factor δ̂ can still be enforced at the higher discount factor δ̃.

By Lemma 6, these actions lead to (weakly) higher profits. The argument for

the induction step is analogous. �

Proof of Proposition 3

The (EC) constraint to enforce first-best effort levels is given by

−nFB(θt)c+ δ
(
qΠh,FB + (1− q)Πl,FB

0

)
− δqg(nFBl )

(
θh − θl

)
≥ 0.

The left-hand side can be bounded from below by
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− nFB(θt)c+ δqΠh,FB − δqg(nFBl )
(
θh − θl

)
≥− nFB(θt)c+ δq

(
θhg(nFBh )− nFBh c

)(1− δ (1− q)
1− δ

)
− δqg(nFBl )

(
θh − θl

)
.

Since θhg(nFBh )− nFBh c > 0 by assumption and because g(nFBl ) is finite, this

expression diverges to infinity as δ → 1. Since, by Lemma 7, (EC) constraints

are relaxed by larger values of δ, the claim follows. �

Proof of Proposition 4

Define δ ∈ (0, 1) as the smallest discount factor such that (ECh) holds as an

equality for first-best effort levels nh = nFBh and nli = nFBl , for all i ∈ N; i.e.,

δ is the smallest discount factor such that

−nFBh c+ δ
(
qΠh,FB + (1− q)Πl,FB

)
= δqg(nFBl )

(
θh − θl

)
.

Note that given first-best effort levels, (ECh) is continuous in δ. Furthermore,

δ > 0 follows from no effort being enforceable for δ = 0. Because nFBh > nFBl ,

all (ECl) constraints are slack at δ for first-best effort levels.

Now, consider the relaxed problem of maximizing Πh subject only to

(ECh). The Lagrange function for this problem is given by

L = Πh + λECh

[
− nhc+

δq

1− δ(1− q)
Πh + δ

((
θl − qθh

)
g(nl0)− (1− q)nl0c

)
+
∞∑
τ=1

(δ(1− q))τ+1 (θlg(nlτ )− nlτc
) ]

where Πh = 1−δ(1−q)
1−δ

(
θhg(nh)− nhc

)
+1−δ(1−q)

1−δ δ(1−q)
[
∞∑
i=0

(δ(1− q))i
(
θlg(nli)− nlic

)]
.

By our assumptions on g, the objective function and the constraint are twice

continuously differentiable in the choice variables
(
nh, nli

)
i∈N. If θl ≥ qθh, the

Lagrangian is strictly concave in the choice variables, and the first-order con-

ditions are necessary and sufficient for an optimum. If θl < qθh, the first-order

conditions are necessary for a global optimum.9

9In this case, one can show that a global optimum exists and that it entails nh ∈ (0, nhFB)
by substituting the binding (ECh) constraint into the objective. Indeed, considering nl0 as
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The first-order conditions for our reduced problem are given by

∂L
∂nh

=
(
θhg′(nh)− c

)(1− δ(1− q)
1− δ

+ λECh
δq

1− δ(1− q)

)
− cλECh = 0;

∂L
∂nl0

= δ(1−q)
(
θlg′(nl0)− c

) 1− δ(1− q)
1− δ

(1 + λECh)−λEChδqg′(nl0)
(
θh − θl

)
= 0 if nl0 > 0;

λECh[−nhc+
δq

1− δ(1− q)
Πh

+δ
((
θl − qθh

)
g(nl0)− (1− q)nl0c

)
+
∞∑
τ=1

(δ(1− q))τ+1 (θlg(nlτ )− nlτc
)
] = 0.

Furthermore, optimality requires ∂L
∂nli

= 0, implying θlg′(nli) = c, for all

i ≥ 1.

Thus, once (ECh) binds and hence λECh > 0, θhg′(nh)−c must be positive

for the respective first-order condition to hold; nh will thus be below its first-

best level. In addition, if nl0 > 0, θlg′(nl0)−c must be positive for the first-order

condition to hold, so that nl0 will be below its first-best level as well. Effort

levels nli are at their efficient level nFBl for all i ≥ 1.

Let nh(δ) be defined by θhg′(nh(δ)) = c1−δ(1−q)
δq

. As g′ is continuous,

strictly decreasing and takes on all values in (0,∞), nh(δ) exists and is unique;

furthermore, the Inverse Function Theorem implies that it is a continuous

function of δ. Moreover, define ñl(δ) by g′(ñl(δ)) = c(1−q)1−δ(1−q)
1−δ

[
1−δ(1−q(1−q))

1−δ θl − qθh
]−1

and nl(δ) by

nl(δ) =

{
ñl(δ) if 1−δ(1−q(1−q))

1−δ θl − qθh > 0

0 otherwise.

Again, as g′ is continuous, strictly decreasing and takes on all values in (0,∞),

nl(δ) exists and is unique; furthermore, the Inverse Function Theorem implies

that it is a continuous function of δ. Clearly, the solution (n̂h, n̂l0)(δ) to the

a function of nh, one shows that this objective function is strictly concave in nh, strictly
increasing for nh close to 0, and, given that we can impose without loss that nl0 ≤ nlFB by
Lemma 6, decreasing at nh = nhFB . Of course, as the global optimum satisfies the first-order
conditions, the properties we derive from them apply to the optimum in this case as well.
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problem in which only (ECh) is imposed entails (n̂h, n̂l0)(δ) ∈ I, where I :=

[nh(δ), nFBh ]× [nl(δ), nFBl ].10 Direct computation shows the partial derivatives

of (ECh) with respect to nh and nl0 respectively to be strictly negative a.e. on

I, while, because δ ≤ δ̄ < 1, its partial derivative with respect to δ is bounded.

Hence, it is feasible to have a policy (n̂h, n̂l0) that is continuous in δ, implying

that the optimal profits Π̂h in this problem are a continuous function of δ. As

(nh, nl0) impacts the (ECli) constraints only via the profits Πh, and since these

constraints are continuous in Πh, all (ECli) constraints hold for the solutions

of this reduced problem in a neighborhood of δ.11 By the argument underlying

the proof of Lemma 7, the (ECh) constraint becomes tighter as the discount

factor δ decreases. Thus, Π̂h(δ) is (weakly) increasing. We can thus take δ as

low as the discount factor at which the (ECli) constraints, i ≥ 1, just hold as

an equality for nli = nFBl , and nh = n̂h and nl0 = n̂l0, as characterized by the

Kuhn-Tucker system above.

It remains to show that nh > nFBl . Suppose to the contrary that nh ≤
nFBl . Yet this solution is dominated by n̂h = n̂l0 = nli = nFBl , which leads to

higher profits and is feasible since all (ECli)-constraints (for i ≥ 1) hold for

nli = nFBl even for the initial nh and nl0. �

Proof of Lemma 8

Suppose to the contrary that a policy σ =
(
nh, nli

)
i∈N such that nh < supi∈N n

l
i =:

n̄l is optimal. Then, the policy σ̂ =
(
n̂h, n̂li

)
i∈N given by n̂h = n̂li = n̄l for all

i ∈ N leads to higher profits Π̂h > Πh and Π̂l ≥ Πl
i (i ∈ N), where Π̂h (Πh) and

Π̂l (Πl
i) are the profits associated with policy σ̂ (σ), respectively. As policy σ

satisfies all (DEli)-constraints, we have that −nlic + δΠ̂l ≥ −nlic + δΠl
i ≥ 0.

This implies −n̄lc+ δΠ̂l ≥ 0, i.e., the policy σ̂ satisfies all (DEli)-constraints.

As, under the policy σ̂, we have that Π̂h = Π̂l + δq(θh − θl)
∑∞

i=0 (δq)i g(n̂li),

the (ECh)-constraint simplifies to −n̄lc+δΠ̂l ≥ 0, which holds by our previous

step. This is a contradiction to policy σ being optimal. �

10One shows that nl < nFB
l (nh < nFB

h ) by showing that the partial derivative of (ECh)
with respect to nl0 (nh) is always strictly negative at nl0 = nFB

l (nh = nFB
h ).

11As the only exception, there is a direct impact of n̂l0 in (ECl0). Yet, as n̂l0 ≤ nFB
l ,

(ECl0) is slacker than the other (ECli) constraints, and thus continues to hold as well.
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Proof of Lemma 9

Suppose the discount factor rises from δ̂ to δ̃ > δ̂. The actions that were

optimal at δ̂ continue to satisfy all (DEli) for δ̃. By Lemma 6, these actions

lead to weakly higher profits. It thus only remains to show that (ECh) is

relaxed as δ increases. For this, we compute the derivative D of (ECh) with

respect to δ, which works out as

D = q

[
Πh + δΠh′ − (θh − θl)

∞∑
i=0

(1 + i)(δq)ig(nli)

]
+ (1− q)

[
Πl

0 + δΠl′

0

]
.

As

Πh =
1

1− δq
[
θhg(nh)− nhc+ δ(1− q)Πl

0

]
,

we have

Πh′ =
1− q
1− δq

[Πl
0 + δΠl′

0 ] +
q

(1− δq)2
[
θhg(nh)− nhc+ δ(1− q)Πl

0

]
.

Furthermore, as

Πl
0 =

∞∑
i=0

δi
(
θlg(nli)− nlic

)
,

we have

Πl
0 + δ(1− δq)Πl′

0 =
∞∑
i=0

(1 + (1− δq)i)δi
(
θlg(nli)− nlic

)
.

Inserting this gives us

(1− δq)2D = q(θhg(nh)−nhc) + (1− q)
∞∑
i=0

(1 + (1− δq)i) δi
(
θlg(nli)− nlic

)
− q(θh − θl)(1− δq)2

∞∑
i=0

(1 + i)(δq)ig(nli).

To show that D ≥ 0, it is sufficient to show that

q(θhg(nh)−nhc)+(1−q)
∞∑
i=0

(1 + (1− δq)i) δi
(
θlg(nli)− nlic

)
−q(θh−θl)g(n̄l) ≥ 0,
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where we have used that
∑∞

i=0(1 + i)(δq)i = 1
(1−δq)2 and supi∈N n

l
i =: n̄l. We

can rewrite this as

q

[
θh(g(nh)− g(n̄l))−

(
nh −

∞∑
i=0

(1 + (1− δq)i)δinli

)
c

+θl

(
g(n̄l)−

∞∑
i=0

(1 + (1− δq)i)δig(nli)

)]

+
∞∑
i=0

(1 + (1− δq)i)δi(θlg(nli)− nlic) ≥ 0.

By Lemma 8, we know that nh ≥ n̄l; by Lemma 6, this implies that

θhg(nh)− nhc ≥ θhg(n̄l)− n̄lc. Thus, it is sufficient for D ≥ 0 that

q

[
θlg(n̄l)− n̄lc−

∞∑
i=0

(1 + (1− δq)i)δi(θlg(nli)− nlic)

]
+
∞∑
i=0

(1+(1−δq)i)δi(θlg(nli)−nlic) ≥ 0,

which was to be shown. �

Proof of Proposition 5

We first omit (DEl) constraints and show ex post that they hold at the solu-

tions of the relaxed problem. Denoting by λ the Lagrange parameter associ-

ated with the (ECh) constraint, the Lagrange function equals

L =
θhg(nh)− nhc+ δ(1− q)

∑∞
i=0 δ

i
(
θlg(nli)− nlic

)
1− δq

(1 + δqλ)

+ λ

[
−nhc+

∞∑
i=0

δi+1
[(

(1− q) θl −
(
θh − θl

)
qi+1

)
g(nli)− (1− q)nlic

]]
,

yielding first-order conditions

∂L
∂nh

=
θhg′(nh)− c

1− δq
(1 + δqλ)− λc = 0 (2)
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∂L
∂nli

=δi+1

{(
θlg′(nli)− c

)((1− q)
1− δq

(1 + δqλ) + λ (1− q)
)

−λqi+1
(
θh − θl

)
g′(nli)

}
= 0 (3)

δ < δh implies λ > 0. Hence, condition (2) gives nh < nFBh , whereas (3)

gives nli < nFBl . Condition (3) also implies that lim
i→∞

nli = nFBl : Since q < 1,

lim
i→∞

qi+1 = 0, hence θlg′(nli)− c = 0.

To show that nli < nli+1, rewrite conditions (3) for nli and for nli+1 as(
θlg′(nli)− c

) (1−q)
1−δq = −λ

[
(1−q)
1−δq

(
θlg′(nli)− c

)
− qi+1

(
θh − θl

)
g′(nli)

]
(
θlg′(nli+1)− c

) (1−q)
1−δq = −λ

[
(1−q)
1−δq

(
θlg′(nli+1)− c

)
− qi+2

(
θh − θl

)
g′(nli)

]
.

Dividing the first by the second equality yields the necessary condition

θlg′(nli)− c
θlg′(nli+1)− c

=

(1−q)
1−δq

(
θlg′(nli)− c

)
− qi+1

(
θh − θl

)
g′(nli)

(1−q)
1−δq

(
θlg′(nli+1)− c

)
− qi+2 (θh − θl) g′(nli)

,

which becomes

qi+1
(
θh − θl

)
g′(nli)

(
θlg′(nli+1)− c

)
− q

(
θlg′(nli)− c

)(
θlg′(nli+1)− c

) [ (1−q)
1−δq

(
θlg′(nli+1)− c

)
− qi+2 (θh − θl) g′(nli)

] = 0.

The denominator of this expression must be different from zero:
(
θlg′(nli+1)− c

)
>

0 because nli+1 < nFBl . The term in squared brackets must be strictly negative:

It captures the partial derivative of the left hand side of the (ECh) constraint

with respect to nli+1. If it were positive, a larger value of nli+1 (which is feasi-

ble) would relax the (ECh) constraint, contradicting that it binds. Therefore,

the term is zero if and only if its numerator is zero, yielding

θlg′(nli+1)− c
θlg′(nli)− c

= q.

Because q < 1 and g(·) is strictly concave, nli+1 > nli.

Finally, note that the derived nli satisfy all (DEli) constraints, −nlic +

δΠl
i+1 ≥ 0. Since nli+1 > nli∀i, Πl

i+1 >
θlg(nli)−nlic

1−δ , hence it is sufficient to show

that

−nlic+δ
θlg(nli)−nlic

1−δ ≥ 0, that is −nlic+δθlg(nli) ≥ 0, holds. Because δ ≥ δl,

this condition would hold for nli = nFBl . Because g(·) is strictly increasing and
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concave, and because g(0) = 0, −nFBl c+ δθlg(nFBl ) ≥ 0 implies that this also

holds for all nli < nFBl . �
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