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Abstract
We study a two-player game of strategic experimentation with exponential bandits à la Keller,

Rady and Cripps (2005) where the safe-arm payoff is different across players. We show that, as in

Das, Klein and Schmid (2020), there exists an equilibrium in cut-off strategies if and only if the

difference in safe-arm payoffs is large enough. In the equilibrium in cutoff strategies, the player

with the higher safe-arm payoff conducts less experimentation. This feature of the equilibrium

offers an explanation for the fact that oftentimes technological innovations are due to startups

rather than established market leaders.

JEL Classification Numbers:C73, D83, O31 Keywords: Two-armed Bandit, Heterogeneous

Agents, Free-Riding, Learning

1 Introduction

There are many situations when information generated through exploration by one agent is helpful
to other agents as well. For example, when, in 2008, Tesla launched the Roadster, the first highway-
compatible all-electric car, using lithium ion battery cells, other automobile companies became aware
of the prospect of using lithium ion; hence gradually, electric cars were launched by companies like
Nissan, Citroën and BMW. In the economics literature, such games with informational externalities1

∗Part of the results presented in this paper were already contained in the third author’s undergraduate thesis, entitled
“Strategisches Experimentieren mit asymmetrischen Spielern,” which she submitted at the University of Munich in 2009
under her maiden name Tönjes.
†University of Leicester; email: daskaustav84@gmail.com
‡Université de Montréal and CIREQ; email:kleinnic@yahoo.com
§Gymnasium Bad Aibling; email: kathi-schmid@online.de
1At the time of the introduction of a new product, a market will typically be very far from saturation, so that it seems

reasonable to abstract from product-market competition between firms.
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have been analysed using models of strategic experimentation with bandits. Most of this literature,
however, has been concerned with homogeneous players. However, car manufacturers clearly dif-
fer widely in terms of market shares. For example, when Tesla was launched in 2003, non-electric
automobile markets were dominated by companies like General Motors and Toyota. In terms of a two-
armed bandit model, this means the safe-arm payoffs were different across players. In this article, we
aim to analyse the impact of asymmetric safe-arm options in a game of strategic experimentation with
two-armed exponential bandits. Our analysis is one way of formalizing Arrow (1962)’s replacement

effect, according to which pre-innovation market power reduces an incumbent’s incentives to inno-
vate. Igami (2017) estimates that 57% of the innovation gap between incumbents and entrants can be
ascribed to the innovator’s dilemma, which explains incumbents’ relative reluctance to innovate by
their fear of the innovation cannibalizing their existing product and market position.

The strategic exponential-bandit model with homogeneous players has been introduced in a sem-
inal paper by Keller, Rady and Cripps (2005). Das, Klein and Schmid (2020) has introduced asym-
metry between the players in terms of different payoff arrival rates. In this article, we consider a
variant of the two-armed bandit model where the asymmetry pertains to players’ safe-arm payoffs.
While we assume the payoff arrival rates on a good risky arm to be the same across the players, each
player has a different flow payoff from their respective safe arm. In all other aspects, our model
is identical to the canonical strategic exponential-bandit model of Keller, Rady and Cripps (2005).
The latter show that with homogeneous players, there does not exist a Markov perfect equilibrium
in which both players use a cut-off strategy. In any equilibrium, players swap the roles of pioneer
and free-rider at least once. By contrast, Das, Klein and Schmid (2020) shows that, with sufficiently
different payoff arrival rates from a good risky arm, there exists an equilibrium where both players use
cut-off strategies. The equilibrium is unique in the class of equilibria in cutoff strategies; whenever
only one player free-rides and the other experiments, it is always the player with the lower arrival rate
who free-rides in the equilibrium in cutoff strategies.

In this article, we show that this feature is robust to the type of asymmetry across players. In par-
ticular, we show that, if the safe arm flow payoffs across players are sufficiently different, there exists
an equilibrium where both players use a cut-off strategy. As in Das, Klein and Schmid (2020), this
equilibrium is unique in the class of MPE in cut-off strategies. Whenever only one player experiments
in equilibrium, it is the player with the lower safe-arm payoff.

In the context of our automobile example, this implies that a company that has a greater market
share for non-electric vehicles will put relatively less effort into innovating by, e.g., offering an electric
vehicle than a new entrant with a lower safe-arm payoff. It is indeed the case that the first highway-
compatible electric vehicle was—arguably surprisingly—launched by a small startup company from
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California named Tesla, rather than by the established automobile giants like General Motors or Toy-
ota. There are other instances as well when technological innovations have come from startups rather
than established market leaders. For example, Christensen (2013) finds that over a period of two
decades from 1976, each new generation of hard drives became smaller in size than the previous one,
and a different set of companies dominated the market in each generation. In a recent paper, Awaya
and Krishna (2021) have offered an explanation as to why, in many instances, technological innova-
tions come from startups rather than firms that are already established in the respective industry. They
consider a strategic bandit model where players can either innovate or not. The established incumbent
is better informed about the viability of the innovation. Their main result shows that the incumbent
tends to innovate less as better information dulls its incentive to learn from its rival. Our equilibrium
in cutoff strategies offers a simple alternative explanation for the same phenomenon. Our model has
the feature that if a company is working towards an innovation, it has to divert some resources from
the market where it is already established. Hence, the opportunity cost of pursuing an innovation
is higher for an already established market leader than for a startup; hence, the latter will be more
inclined to persevere in its pursuit of innovation.

1.1 Related Literature

The paper contributes to the literature on strategic bandit models, a problem studied widely in eco-
nomics. Some of the seminal papers in this area are by Bolton and Harris (1999), Keller, Rady and
Cripps (2005), Keller and Rady (2010), Klein and Rady (2011), Klein (2013) and Thomas (2021).
All these papers deal with symmetric players. The paper that is closest to the present article is Das,
Klein and Schmid (2020), where we demonstrate how an equilibrium in cut-off strategies can exist if
players have different learning abilities concerning the risky arm. In the current paper, we show that
the same conclusion holds if the players have different safe-arm payoffs, while their innate exploration
abilities are the same.

The rest of the paper is organised as follows. Section 2 describes the two-armed bandit model
with different safe-arm payoffs. Sections 3 and 4 analyse the social planner’s problem, and the non-
cooperative game, respectively. Section 5 concludes. Our results are proved in the Appendix.

2 Two-armed bandit model with different safe-arm payoffs

There are two players (1 and 2), each of whom faces a two-armed bandit in continuous time. One
of the arms is safe. If player i ∈ {1,2} uses it, he gets a flow payoff of si, where 0 < s1 < s2. The
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risky arm can be either good or bad. Both players’ risky arms are of the same quality. If the risky arm
is good, then a player using it receives a lump sum at the jumping times of a Poisson process with
parameter λ > 0; the lump sum is drawn from a time-invariant distribution with mean h > 0. If the
risky arm is bad, it never yields any payoff. Thus, a good risky arm gives both players an expected
flow payoff of g = λh, where we assume that 0 < s1 < s2 < g. In all other aspects, the model is
similar to the one in Das, Klein and Schmid (2020). The parameter values and the game are common
knowledge.

Players do not initially know whether their risky arms are good or bad. They start with a common
prior belief p0 ∈ (0,1) that their risky arms are good. Players have to decide in continuous time
whether to choose the risky arm or the safe arm, and at each instant a player can choose only one arm.
We write ki,t = 1(0) if player i ∈ {1,2} uses the risky (safe) arm at instant t ∈ R+. Players’ actions
and outcomes are perfectly publicly observable. This implies that players have a common posterior
belief pt at all times t ≥ 0. Players discount the future according to the common discount rate r > 0.

Let pt be the players’ common belief that their risky arm is good at time t ≥ 0. Since only a good
risky arm can ever yield positive payoffs, the arrival of a lump sum fully reveals the risky arm to be
good. In the absence of a lump-sum arrival, by Bayes’ rule, the belief follows the following law of
motion:

d pt =−λ (k1,t + k2,t)pt(1− pt)dt.

In the next section, we characterise a utilitarian planner’s solution.

3 The Planner’s Solution

The planner’s objective is to maximise the sum of the players’ expected discounted payoffs. The
planner’s action is denoted by the pair (k1,k2) (ki ∈ {1,2}), where ki = 0(1) denotes that the planner
has allocated player i to the safe (risky) arm. The planner’s value function v satisfies the Bellman
equation

v(p) = s1 + s2 + max
k1∈{0,1}

k1[B(p,v)− c1(p)]+ max
k2∈{0,1}

k2[B(p,v)− c2(p)]

where B(p,v) = λ p{2g−v−v
′
(1−p)}

r and ci(p) = si−gp (i = 1,2). We characterise the planner’s solution
in the following proposition.

Proposition 1 Let p∗1 := rs1
(2λ+r)g−λ (s1+s2)

. There exists a threshold p∗2 ∈
(

p∗1,
s2
g

)
such that the plan-
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ner’s optimal policy is given by

(k∗1(p),k∗2(p)) =


(1,1) if p > p∗2
(1,0) if p∗1 < p≤ p∗2
(0,0) if p≤ p∗1

.

The planner’s value is C1, (strictly) increasing and convex (on (p∗1,1)), and is given by

v(p)=


2pg+C11(1− p)

(
1−p

p

) r
2λ

=: v(1,1)(p) if p > p∗2

s2 +
(2λ+r)g−λ s2

λ+r p+ 1−p
1−p∗1

(
(1−p)p∗1
(1−p∗1)p

) r
λ

[
s1− (2λ+r)g−λ s2

λ+r p∗1
]

=: v(1,0)(p) if p∗1 < p≤ p∗2
s1 + s2 =: v(0,0)(p) if p≤ p∗1

,

where the threshold p∗2 is implicitly defined by v(1,0)(p∗2) = 2s2, and the constant of integration C11 > 0
is such that v(1,1)(p∗2) = 2s2.

The proof can be found in Appendix (A). Next, we turn our attention to the analysis of the non-
cooperative game.

4 The Non-Cooperative Game

In the non-cooperative game, we restrict ourselves to Markovian strategies with the common posterior
belief as the state variable, defined as mappings ki : [0,1]→{0,1}, where ki(p) = 0(1) indicates that
player i ∈ {1,2} is choosing the safe (risky) arm, if the common posterior belief is p ∈ [0,1]. The
Bellman equations for players 1 and 2’s value functions can respectively be written as

v1(p) = s1 + k2b(p,v1)+ max
k1∈{0,1}

k1[b(p,v1)− c1(p)],

and
v2(p) = s2 + k1b(p,v2)+ max

k2∈{0,1}
k2[b(p,v2)− c2(p)],

where b(p,v) = λ p{g−v−v
′
(1−p)}

r .
We shall now determine the players’ best responses, using the same method as Keller, Rady and

Cripps (2005) or Das, Klein and Schmid (2020). Suppose player 2 is choosing the safe arm in some
neighbourhood of p ∈ (0,1). Then, player 1 chooses the risky arm at p if and only if the belief p
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exceeds his single-agent threshold,

p̄1 =
rs1

(r+λ )g−λ s1
.

By the same token, if player 1 is choosing the safe arm in a neighbourhood of p, player 2 will choose
the risky arm as long as the belief is greater than p̄2 := rs2

(r+λ )g−λ s2
. Since, s1 < s2, we have p̄1 < p̄2.

Also, from the previous section we can conclude that p̄1 > p∗1, so that the overall amount of learning
is inefficiently low in equilibrium.

Now, suppose that player 2 is playing the risky arm in some neighbourhood of p ∈ (0,1). Player
1’s best response is to choose the risky arm if and only if b(p,v1)≥ c1(p), and hence v1 ≥ s1+c1(p),
in this neighbourhood. This means that given the other player is choosing the risky arm, choosing the
risky arm constitutes a best response for player 1 if and only if v1 lies above D1 in the (p,v)-plane,
where the diagonal D1 is defined as

D1 := {(p,v) ∈ [0,1]×R+ : v = s1 + c1(p)} .

Similarly, for player 2, given that player 1 is choosing the risky arm, choosing the risky arm constitutes
a best response for player 2 if and only if v2 is above D2 in the (p,v)-plane,2 where

D2 := {(p,v) ∈ [0,1]×R+ : v = s2 + c2(p)} .

The players’ best-response diagonals are depicted in Figure 1.
From Figure 1, it can be observed that heterogeneity in safe-arm payoffs drives a wedge between

players’ best response lines. When s1 = s2, D1 and D2 coincide, while, when s2 = g, the lines are the
farthest apart from each other. The next proposition shows that if and only if players are sufficiently
heterogeneous, there exists an equilibrium where both players use cutoff strategies; moreover, this
equilibrium is unique in the class of equilibria where both players use cutoff strategies.

Proposition 2 There exists an equilibrium where both players use cutoff strategies if and only if

s2 ∈ [s∗2,g), for some s∗2 ∈ (s1,g). In this equilibrium, player 1 chooses the risky arm for all beliefs

greater than p̄1 and chooses the safe arm otherwise. There exists a unique p
′
2 ∈ (p̄1,1) such that player

2 chooses the risky arm for beliefs greater than p
′
2 and the safe arm otherwise. This equilibrium is

unique in the class of equilibria where both players use cutoff strategies.

2In a slight abuse of notation, we shall in the following also write Di (i ∈ {1,2}) for the function D̃i : [0,1]→ R such
that Di be the graph of D̃i, i.e., (p, D̃i(p)) ∈ Di for all p ∈ [0,1].
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Figure 1: Best response lines
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The formal proof of this proposition is given in Appendix (B). It can be seen from Figure 2 that,
as players’ safe-arm payoffs diverge from each other, the range of beliefs over which only player
2 can free-ride expands. Just as in Das, Klein and Schmid (2020), this difference in free-riding
opportunities allows for the existence of an equilibrium in cutoff strategies. The equilibrium in cutoff
strategies indeed has the property that, as p̄1 < p′2, the first success is more likely to come from the
player with the lower safe-arm payoff, i.e., the small new startup rather than the bigger established
firm with a higher safe-arm payoff. Still, the player with the higher safe-arm payoff enjoys a higher3

incumbent equilibrium payoff.4 The equilibrium is depicted in Figure 2. The equilibrium in cutoff
strategies exists only if the curve v1 intersects D1 at a belief that is lower than the one at which the
curve v2 intersects D2, i.e., the risky arm becomes dominant for player 1 at a more pessimistic belief
than it does for player 2, even conditionally on player 1 being alone in experimenting in the entire

region where safe and risky are mutually best responses. Geometrically, the wedge between the best-
response diagonals is large compared to the wedge between the payoff functions in the relevant range.
This is possible only if the players are sufficiently heterogeneous. Thus, as in Das, Klein and Schmid
(2020), sufficient heterogeneity, and hence sufficiently different free-riding opportunities, allow for

the existence of a cutoff equilibrium. A larger difference in players’ safe-arm payoffs reduces the
free-riding opportunities of player 1, while expanding those of player 2.

5 Conclusion

In this article, we have considered a two-armed strategic bandit model where players face different
opportunity costs of experimentation in terms of safe-arm payoffs but an identical rate of learning on
the risky arm. We show that, as in Das, Klein and Schmid (2020), there exists a Markov Perfect
equilibrium in cut-off strategies if and only if players are sufficiently asymmetric, i.e., the difference
in safe-arm payoffs is high enough. Hence, we show that the conclusion that a sufficient degree
of asymmetry across players is necessary and sufficient for the existence of an equilibrium in cutoff
strategies continues to apply also when the asymmetry pertains to the opportunity costs, rather than the
yield, of information acquisition via the risky arm. Furthermore, our equilibrium in cut-off strategies
offers a simple explanation for the observation that, in many instances, innovation will come from
start-ups rather than established companies, the idea being that start-ups have less to lose by focussing

3Qualitatively, this means incumbents cannot achieve success in the new technology because the profits from their
current option are too attractive. This echoes the finding of Christensen (2013): “leading firms were held captive by their
customers, enabling attacking entrant firms to topple the incumbent industry leaders each time a disruptive technology
emerged.” (p. 24).

4That v2 cannot cross v1 from above can be seen immediately from the appertaining ODEs.
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Figure 2: Equilibrium in cutoff strategies
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their resources and energy on the pursuit of an innovation.
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APPENDIX

A Proof of Proposition 1

We prove the proposition in two steps. First, we compute the planner’s payoff from the proposed
policy, and show that it is C1. Then, we show that this payoff and the associated policy solve the
Bellman equation.

First, consider the range p ∈ [0, p∗1]. According to the conjectured solution, k∗1(p) = k∗2(p) = 0,
and v(p) = s1 + s2.

For p∈ (p∗1, p∗2], according to the conjectured solution, k∗1(p) = 1 and k∗2(p) = 0. This implies that
v(p) satisfies the ODE

λ p(1− p)v′(p)+(r+λ p)v(p) = rs2 +(r+2λ )pg,

which is solved by

v(1,0)(p) = s2 +
(2λ + r)g−λ s2

λ + r
p+C10(1− p)

(
1− p

p

) r
λ

,

where C10 = 1
1−p∗1

(
1−p∗1

p∗1

)− r
λ

[
s1− (2λ+r)g−λ s2

λ+r p∗1
]
> 0 is a constant of integration, which is deter-

mined by value matching at p = p∗1; direct computation verifies that smooth pasting obtains as well,
i.e., that v(1,0)

′
(p∗1) = 0. As C10 > 0, v(1,0) is strictly convex and hence strictly increasing. Moreover,

v(1,0)(1)> 2s2 > s1 + s2 = v(1,0)(p∗1). Thus, p∗2 ∈ (p∗1,1) is well-defined.
For p > p∗2, both players use the risky arm according to the conjectured solution. Hence, the

planner’s value v(p) satisfies the ODE

2λ p(1− p)v′(p)+(r+2λ p)v(p) = 2(r+2λ )pg,

which is solved by

v(1,1)(p) = 2pg+C11(1− p)
(

1− p
p

) r
2λ

,

where C11 is a constant of integration determined by v(1,1)(p∗2) = 2s2 = v(1,0)(p∗2). It is immediate
to verify from the appertaining ODEs that this implies that v(1,1)

′
(p∗2) = v(1,0)

′
(p∗2) (smooth pasting),

and that therefore v is strictly increasing and convex on (p∗2,1) as well. As is immediate from the
expression for v(1,1),C11 > 0 if and only if p∗2 <

s2
g . To show that indeed p∗2 <

s2
g , it is sufficient to note
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that v(1,0)
(

s2
g

)
> 2s2, which is easily verified as v(1,0)

(
s2
g

)
−C10

(
1− s2

g

)(
g−s2

s2

) r
λ

> 2s2.
It remains to show that the proposed policy satisfies the planner’s Bellman equation. First, on

[0, p∗1], v(p) = s1 + s2, and therefore B(p,v) = λ

r p(2g− s1− s2)≤ si− pg = ci(p), as p≤ p∗1.
On (p∗1, p∗2), B(p,v) = v(p)− pg− s2, so that B(p,v) ≥ c1(p) if and only if v(p) ≥ s1 + s2, and

B(p,v)≤ c2(p) if and only if v(p)≤ 2s2; both inequalities hold by the monotonicity of v.
On (p∗2,1), B(p,v) = v(p)

2 − pg, and thus B(p,v)≥ c2(p)≥ c1(p) if and only if v(p)≥ 2s2, which
holds by the monotonicity of v.

B Proof of Proposition 2

The same argument as in Das, Klein and Schmid (2020), Proposition 2, establishes that neither player
will play risky on [0, p̄1] in any equilibrium.

In any equilibrium, for beliefs just above p̄1, only player 1 can experiment with the risky arm, as
p̄1 < p̄2 and the point (p̄1,si) lies below both diagonals D1 and D2 in (p,v)-space. This implies that,
for beliefs just above p̄1, the payoff of player 1 follows the ODE

λ p(1− p)v′(p)+(r+λ p)v(p) = (r+λ )pg,

which is solved by

v(1,0)1 (p) = gp+C(1,0)
1 (1− p)

(
1− p

p

) r
λ

.

The integration constant C(1,0)
1 is determined by the value-matching condition v(1,0)1 (p̄1) = s1.

On an open interval of beliefs in which only player 1 is experimenting, player 2’s payoff satisfies
the ODE

λ p(1− p)v′(p)+(r+λ p)v(p) = rs2 +λ pg,

which is solved by

v(1,0)2 (p) = s2 +
λ

λ + r
(g− s2)p+C(1,0)

2 (1− p)
(

1− p
p

) r
λ

.

The integration constant C(1,0)
2 is determined by the value-matching condition v(1,0)2 (p̄1) = s2.

First, we show that there exists a unique p
′
1 ∈ (p̄1,1) such that v(1,0)1 (p

′
1) = D1(p

′
1). Indeed, as

p̄1g < s1, C(1,0)
1 > 0, and v(1,0)1 is strictly convex. It is easy to check that v(1,0)

′

1 (p̄1) = 0, i.e., smooth
pasting holds at p̄1. Therefore, v(1,0)1 is strictly increasing on (p̄1,1). The diagonal D1, on the other
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hand, is monotonically decreasing in p. Moreover, since p̄1 <
s1
g , we have s1 = v(1,0)1 (p̄1)< D1(p̄1),

and g = v(1,0)1 (1)> D1(1) = 2s1−g. Hence, there exists a unique p
′
1 ∈ (p̄1,1) such that v(1,0)1 (p

′
1) =

D1(p
′
1). Note that since both v(1,0)1 and D1 are independent of s2, the threshold p

′
1 is independent of

s2.
Next, we will argue that there exists a unique p

′
2 ∈ (p̄1,1) such that v(1,0)2 (p

′
2) = D2(p

′
2). As

s2 +
λ

λ+r (g− s2)p̄1 > s2, C(1,0)
2 < 0, and v(1,0)2 is strictly concave; it is moreover strictly increasing.

The diagonal D2 is monotonically decreasing in p. Moreover, since p̄1 < s1
g < s2

g , we have s2 =

v(1,0)2 (p̄1)<D2(p̄1), and λg+rs2
λ+r = v(1,0)2 (1)>D2(1) = 2s2−g. Thus, there exists a unique p

′
2 ∈ (p̄1,1)

such that v(1,0)2 (p
′
2) = D2(p

′
2).

By the properties of the best-response correspondences, an equilibrium in cutoff strategies can
exist only if p

′
2 ≥ p

′
1. When s2 ↑ g , p

′
2 → 1. Moreover, v(1,0)2 (p) ≈ s2 for s2 close to g. Since

p
′
1 ∈ (p̄1,1) is independent of s2, p

′
2 ≈ 1 > p

′
1 for s2 close enough to g. For the case s2 = s1, we

know by Keller, Rady and Cripps (2005) that p
′
2 < p

′
1. As s2 increases, the line D2 shifts upward and

to the right, while v(1,0)2 , a strictly increasing function satisfying v(1,0)2 (p̄1) = s2 <
λg+rs2

λ+r = v(1,0)2 (1)
becomes flatter. (Recall that p̄1 is independent of s2.) Hence, p

′
2 increases as s2 increases. Thus, there

exists a unique s∗2 ∈ (s1,g) such that, for all s2 ∈ [s∗2,g), p
′
2 ≥ p

′
1.

We have shown so far that s2 ≥ s∗2 is necessary for the existence of an equilibrium in cutoff strate-
gies, and that the only candidate for an equilibrium in cutoff strategies is that in which player i applies
the cutoff p

′
i. It remains to show that these cutoffs indeed define an equilibrium whenever s2 ≥ s∗2,

i.e., that k1 = 1
(p′1,1]

and k2 = 1
(p′2,1]

are mutually best responses. For beliefs p ∈ [0, p
′
2], this is so by

construction. Let us therefore turn to the belief range (p
′
2,1].

In this range, the proposed strategies imply that player i’s value function follows the ODE

2λ p(1− p)v′i(p)+(r+2λ p)vi(p) = (r+2λ )pg,

which is solved by

v(1,1)i (p) = pg+C(1,1)
i (1− p)

(
1− p

p

) r
2λ

,

where C(1,1)
i is a constant of integration determined by v(1,1)i (p

′
2) = v(1,0)i (p

′
2).

To show that player 1 plays a best response in this range, it suffices to show that v(1,1)1 ≥ D1

throughout this range. As p
′
2≥ p

′
1, the monotonicity of v(1,0)1 and D1 imply that v(1,0)1 (p

′
2)= v(1,1)1 (p

′
2)≥

D1(p
′
2). Now suppose to the contrary that there exists some p̂∈ [p′2,1) such that v(1,1)1 (p̂) =D1(p̂) and

v(1,1)
′

1 (p̂)≤−g = D′1(p̂). By the ODE for v(1,1)1 , this implies p̂≤ rs1
(2λ+r)(g−s1)+rs1

< p̄1 < p
′
1≤ p

′
2≤ p̂,
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a contradiction. Thus, v(1,1)1 (p)≥ D1(p) for all p ∈ [p
′
2,1], and player 1 is playing a best response in

this range as well.
Now let us turn to player 2. The payoff function v(1,1)2 is convex if and only if C(1,1)

2 ≥ 0, i.e., if and
only if v(1,1)2 (p

′
2) = v(1,0)2 (p

′
2) = D2(p

′
2) = 2s2− p

′
2g≥ p

′
2g, which is equivalent to p

′
2 ≤

s2
g ; this holds

because v(1,0)2 is strictly increasing, D2 is strictly decreasing, s2 = v(1,0)2 (p̄1) = D2(
s2
g ), and p̄1 <

s2
g .

Thus, v(1,1)2 is convex. Direct computation from the appertaining ODEs furthermore shows smooth
pasting at p

′
2, i.e., v(1,1)

′

2 (p
′
2) = v(1,0)

′

2 (p
′
2) > 0. We can thus conclude that v(1,1)2 is monotonically

increasing on (p
′
2,1), and therefore v(1,1)2 (p) > D2(p) for all p ∈ (p

′
2,1], as D2 is monotonically

decreasing. This shows that player 2 is playing a best response on [p
′
2,1] as well, thus concluding the

proof.
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