Relational Contracts with Private Information: The Upside of Implicit Downsizing Costs

Matthias Fahn (LMU München)
Nicolas Klein (Université de Montréal)

Erice, May, 2017
Private Information in Relational Contracts

Introduction

Model

Benchmark: Public Info

Private Types

Conclusion

Literature
A principal wants to give an agent incentives to exert effort repeatedly; has some private info about productivity of agent’s labour. Optimal effort depends on this productivity.
A principal wants to give an agent incentives to exert effort \textbf{repeatedly}; has some private info about productivity of agent’s labour. Optimal effort depends on this productivity.

Effort is observable but not contractible.

Only one-period (formal) contracts; principal can pay the agent a “voluntary” bonus to reward him for his effort.

Bonus is bounded above by value of \textit{future} relationship.
Private Information in Relational Contracts

A principal wants to give an agent incentives to exert effort repeatedly; has some private info about productivity of agent’s labour. Optimal effort depends on this productivity.

Effort is observable but not contractible.

Only one-period (formal) contracts; principal can pay the agent a “voluntary” bonus to reward him for his effort.

Bonus is bounded above by value of future relationship.

Novelty: When deciding on the bonus payment, the principal has private information about the productivity of the agent’s effort in the next period.
Model

Introduction

Model
- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Conclusion

Literature
Model Setup

One principal, one agent (both risk neutral).
Model Setup

One principal, one agent (both risk neutral).

Time \(t = 1, 2, \ldots \).
Model Setup

One principal, one agent (both risk neutral).

Time $t = 1, 2, \ldots$.

Common discount factor $\delta \in (0, 1)$.

M. Fahn & N. Klein

Relational Contracts with Private Information – 4
Model Setup

One principal, one agent (both risk neutral).

Time $t = 1, 2, \ldots$.

Common discount factor $\delta \in (0, 1)$.

Labour productivity in period t depends on type $\theta_t \in \{\theta^l, \theta^h\}$ ($0 < \theta^l < \theta^h$).
One principal, one agent (both risk neutral).

Time \(t = 1, 2, \ldots \).

Common discount factor \(\delta \in (0, 1) \).

Labour productivity in period \(t \) depends on type \(\theta_t \in \{ \theta^l, \theta^h \} \) (\(0 < \theta^l < \theta^h \)).

\[\theta_1 = \theta^h; \theta_t = \theta^h \text{ with probability } q \in (0, 1) \text{ for all } t = 2, 3, \ldots \text{ (iid).} \]
1. Principal offers 1-period contract, consisting of wages w_t.
Timing

1. Principal offers 1-period contract, consisting of wages w_t.
2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
Timing

1. Principal offers 1-period contract, consisting of wages w_t.
2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
3. If $d_t = 1$, agent chooses his effort $n_t \geq 0$; effort costs cn_t ($c > 0$).
Timing

1. Principal offers 1-period contract, consisting of wages w_t.
2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
3. If $d_t = 1$, agent chooses his effort $n_t \geq 0$; effort costs $c n_t$ ($c > 0$).
4. Principal privately observes next period’s type θ_{t+1}.
Timing

1. Principal offers 1-period contract, consisting of wages w_t.
2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
3. If $d_t = 1$, agent chooses his effort $n_t \geq 0$; effort costs cn_t ($c > 0$).
4. Principal privately observes next period’s type θ_{t+1}.
5. Output $y_t = g(n_t)$ is realized and publicly observed (not contractible!); $g: \mathbb{R}_+ \to \mathbb{R}_+$ is C^2, with $g(0) = 0$, $g' > 0 > g''$, $g'(0) = \infty$, $g'(\infty) = 0$; profit $\theta_t y_t$.

 \rightarrow First-best effort $n^*(\theta)$ given by $\theta g'(n^*(\theta)) = c.$
Timing

1. Principal offers 1-period contract, consisting of wages w_t.
2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
3. If $d_t = 1$, agent chooses his effort $n_t \geq 0$; effort costs cn_t ($c > 0$).
4. Principal privately observes next period’s type θ_{t+1}.
5. Output $y_t = g(n_t)$ is realized and publicly observed (not contractible!); $g : \mathbb{R}_+ \to \mathbb{R}_+$ is C^2, with $g(0) = 0$, $g' > 0 > g''$, $g'(0) = \infty$, $g'(\infty) = 0$; profit $\theta_{t} y_t$.

\rightarrow **First-best effort** $n^*(\theta)$ given by $\theta g'(n^*(\theta)) = c$.
6. Bonus $b_t \geq 0$ is paid by the P to A. P sends A cheap-talk message.
The Players’ Payoffs

Principal:

\[
d_t \left(\theta_t g(n_t) - w_t \right) + E \left[-b_t + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} d_\tau \left(\theta_\tau g(n_\tau) - w_\tau - b_\tau \right) \right].
\]
The Players’ Payoffs

Principal:

\[d_t (\theta_t g(n_t) - w_t) + E \left[-b_t + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} d_\tau (\theta_\tau g(n_\tau) - w_\tau - b_\tau) \right]. \]

Agent:

\[d_t (w_t - c n_t) + E \left[b_t + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} d_\tau (-c n_\tau + w_\tau + b_\tau) \right]. \]
Solution Concept

Solution Concept: PPE (standard in this literature).

Public strategy = Strategy which does not condition on past private info (which is not payoff-relevant!).
Solution Concept

Solution Concept: PPE (standard in this literature).

Public strategy = Strategy which does not condition on past private info (which is not payoff-relevant!).

Restrict attention to pure strategies.
Solution Concept

Solution Concept: PPE (standard in this literature).

Public strategy = Strategy which does not condition on past private info (which is not payoff-relevant!).

Restrict attention to pure strategies.

⇒ On-path equilibrium actions completely determined by past type realizations θ^t.
Solution Concept

Solution Concept: PPE (standard in this literature).

Public strategy = Strategy which does not condition on past private info (which is not payoff-relevant!).

Restrict attention to pure strategies.

⇒ On-path equilibrium actions completely determined by past type realizations θ^t.

Look for a best PPE for the principal. This equilibrium also maximizes joint surplus.
Benchmark: Public Info

- \(\theta \) public info
- Optimum

Private Types

Conclusion

Literature
The Firm’s Type is Public Information: Constraints

Introduction

Model

Benchmark: Public Info
- θ public info
- Optimum

Private Types

Conclusion

Literature
The Firm’s Type is Public Information: Constraints

1. Agent needs to accept offer: $U(\theta^t) \geq 0$ for all θ^t.
The Firm’s Type is Public Information: Constraints

1. Agent needs to accept offer: \(U(\theta^t) \geq 0 \) for all \(\theta^t \).

2. After receiving \(w_t \), agent must find it optimal to exert the right level of effort:

\[
-n(\theta^t)c + q\left(b^h(\theta^t) + \delta U^h(\theta^t)\right) + (1 - q)\left(b^l(\theta^t) + \delta U^l(\theta^t)\right) \\
\geq -\tilde{n}c + q\left(b^h(\theta^t, \tilde{n}) + \delta U^h(\theta^t, \tilde{n})\right) \\
+ (1 - q)\left(b^l(\theta^t, \tilde{n}) + \delta U^l(\theta^t, \tilde{n})\right).
\]
The Firm’s Type is Public Information: Constraints

1. Agent needs to accept offer: $U(\theta^t) \geq 0$ for all θ^t.

2. After receiving w_t, agent must find it optimal to exert the right level of effort:

$$-n(\theta^t)c + q \left(b^h(\theta^t) + \delta U^h(\theta^t) \right) + (1 - q) \left(b^l(\theta^t) + \delta U^l(\theta^t) \right) \geq -\tilde{n}c + q \left(b^h(\theta^t, \tilde{n}) + \delta U^h(\theta^t, \tilde{n}) \right) + (1 - q) \left(b^l(\theta^t, \tilde{n}) + \delta U^l(\theta^t, \tilde{n}) \right).$$

3. It must be optimal for the principal to make equilibrium bonus payments

$$-b^h(\theta^t) + \delta \Pi^h(\theta^t) \geq 0 \quad \text{(DEh)}$$
$$-b^l(\theta^t) + \delta \Pi^l(\theta^t) \geq 0. \quad \text{(DEl)}$$
(DEh) and (DEI) can be combined into

\[- (q b^h(\theta^t) + (1 - q) b^l(\theta^t)) + \delta (q \Pi^h(\theta^t) + (1 - q) \Pi^l(\theta^t)) \geq 0. \]

(DE)
Equilibrium effort only depends on the current state:
\[n(\theta^t) = n(\theta^t) \]

Only observable deviations; no need to destroy surplus on the equilibrium path \(\Rightarrow \) Want to be as close to FB-level as possible

Stationary environment (iid): Maximum enforceable effort levels the same for every history \(\theta^t \).
Profit-Maximizing Equilibrium with Public Info

Proposition: Assume the firm’s type is publicly observable. Then, there are levels of the discount factor, δ and $\bar{\delta}$, with $0 < \underline{\delta} < \delta < \bar{\delta} < 1$, such that

- n^h and n^l are at their efficient levels for $\delta \geq \bar{\delta}$.
- $n^h \geq n^l$, but n^h is inefficiently low, and n^l is at its efficient level for $\underline{\delta} \leq \delta < \bar{\delta}$;
- $n^h = n^l$, and both effort levels are inefficiently low for $\delta < \underline{\delta}$.
Principal needs incentives not to misrepresent his private type after any history θ_t:

\rightarrow Additional constraint:
Principal needs incentives not to misrepresent his private type after any history θ^t:

\rightarrow Additional constraint:

\[-b^h(\theta^t) + \delta \Pi^h(\theta^t) \geq -b^l(\theta^t) + \delta \tilde{\Pi}^l(\theta^t) \quad (TTh)\]

\[-b^l(\theta^t) + \delta \Pi^l(\theta^t) \geq -b^h(\theta^t) + \delta \tilde{\Pi}^h(\theta^t) \quad (TTl)\]
Principal needs incentives not to misrepresent his private type after any history θ^t:

\Rightarrow Additional constraint:

$$-b^h(\theta^t) + \delta \Pi^h(\theta^t) \geq -b^l(\theta^t) + \delta \tilde{\Pi}^l(\theta^t) \quad \text{(TTh)}$$

$$-b^l(\theta^t) + \delta \Pi^l(\theta^t) \geq -b^h(\theta^t) + \delta \tilde{\Pi}^h(\theta^t). \quad \text{(TTl)}$$

where

$$\tilde{\Pi}^l(\theta^t) = \Pi^l(\theta^t) + \theta^h g(n^l(\theta^t)) - \theta^l g(n^l(\theta^t));$$

$$\tilde{\Pi}^h(\theta^t) = \Pi^h(\theta^t) - \theta^h g(n^h(\theta^t)) + \theta^l g(n^h(\theta^t)).$$

Uses One-Deviation Principle.
Overview of Constraints

\[U(\theta^t) \geq 0 \] \hspace{2cm} \text{(IR)}

\[-n(\theta^t)c + q\left(b^h(\theta^t) + \delta U^h(\theta^t)\right) + (1-q)\left(b^l(\theta^t) + \delta U^l(\theta^t)\right) \geq 0 \] \hspace{2cm} \text{(IC)}

\[-b^h(\theta^t) + \delta \Pi^h(\theta^t) \geq 0 \] \hspace{2cm} \text{(DEh)}

\[-b^l(\theta^t) + \delta \Pi^l(\theta^t) \geq 0. \] \hspace{2cm} \text{(DEl)}

\[-b^h(\theta^t) + \delta \Pi^h(\theta^t) \geq -b^l(\theta^t) + \delta \tilde{\Pi}^l(\theta^t) \] \hspace{2cm} \text{(TTh)}

\[-b^l(\theta^t) + \delta \Pi^l(\theta^t) \geq -b^h(\theta^t) + \delta \tilde{\Pi}^h(\theta^t) \] \hspace{2cm} \text{(TTl)}
The (EC) Constraint

Agency problem with private info boils down to constraint

\[-n(\theta^t) c + \delta q \Pi^h(\theta^t) + \delta (1-q) \Pi^l(\theta^t) \geq \delta q g(n^l(\theta^t))(\theta^h - \theta^l).\]

(EC)
The (EC) Constraint

Agency problem with private info boils down to constraint

\[-n(\theta^t)c + \delta q \Pi^h(\theta^t) + \delta (1-q) \Pi^l(\theta^t) \geq \delta q g(n^l(\theta^t)) (\theta^h - \theta^l).\]

(EC)

(LHS) like (DE) constraint

(RHS) New effect: Information Rent of the P, who always has the option of claiming tomorrow’s profits are lower (only \(\theta^l g(n^l(\theta^t))\)) than they actually are (\(\theta^h g(n^l(\theta^t))\)).
Lemma: There exists an optimal equilibrium with the property that, for every two histories θ^t and $\tilde{\theta}^t$, $n^h(\theta^t) = n^h(\tilde{\theta}^t)$. Furthermore, for every history θ^t, $n^l(\theta^t) = n^l_i$, where $i \in \{0, 1, 2, \ldots\}$ denotes the number of previous consecutive periods τ with $\theta_\tau = \theta^l$.
Lemma: There exists an optimal equilibrium with the property that, for every two histories \(\theta_t \) and \(\tilde{\theta}_t \), \(n^h(\theta_t) = n^h(\tilde{\theta}_t) \). Furthermore, for every history \(\theta_t \), \(n^l(\theta_t) = n^l_i \), where \(i \in \{0, 1, 2, \ldots\} \) denotes the number of previous consecutive periods \(\tau \) with \(\theta_\tau = \theta^l \).

\(n^h \) only enters the (LHS) of the (EC) constraint; reduction of \(n^h(\theta_t) \) does not increase \(P \)'s commitment. \(\Rightarrow \) Have the \(n^h \) that is the closest possible to the FB after any history \(\theta_t \).

Environment stationary \(\Rightarrow \) Closest \(n^h \) to the FB possible is the same after any history \(\theta_t \).
Dynamics of Equilibrium Employment

Lemma: There exists an optimal equilibrium with the property that, for every two histories θ^t and $\tilde{\theta}^t$, $n^h(\theta^t) = n^h(\tilde{\theta}^t)$. Furthermore, for every history θ^t, $n^l(\theta^t) = n^l_i$, where $i \in \{0, 1, 2, \ldots\}$ denotes the number of previous consecutive periods τ with $\theta^\tau = \theta^l$. n^h only enters the (LHS) of the (EC) constraint; reduction of $n^h(\theta^t)$ does not increase P’s commitment. \Rightarrow Have the n^h that is the closest possible to the FB after any history θ^t.

Environment stationary \Rightarrow Closest n^h to the FB possible is the same after any history θ^t.

By contrast, reduction of n^l enhances P’s commitment.
Result: High δ

Proposition: There exists a $\delta \in (0, 1)$ such that optimal equilibrium profits are equal to first-best surplus for all $\delta > \bar{\delta}$. In this case, for every history θ^t, first-best effort levels $n^*(\theta^t)$ can be implemented.
Intermediate δ

Proposition: There exist discount factors $\underline{\delta}$ and $\overline{\delta}$, with $0 < \underline{\delta} < \overline{\delta} < 1$, such that, in an optimal equilibrium, for $\delta \in (\underline{\delta}, \overline{\delta})$, n^h and n^l_0 are inefficiently low; for all $i \geq 1$, $n^l_i = n^\ast(\theta^l)$.
Intermediate δ

Proposition: There exist discount factors $\underline{\delta}$ and $\overline{\delta}$, with $0 < \underline{\delta} < \overline{\delta} < 1$, such that, in an optimal equilibrium, for $\delta \in (\underline{\delta}, \overline{\delta})$, n^h and n^l_0 are inefficiently low; for all $i \geq 1$, $n^l_i = n^* (\theta^l)$.

(ECh) binds; need to reduce n^h.

n^l_0 is also reduced! \Rightarrow Cost of not telling the truth in high state goes up; “transferring effort from low to high state”

n^l_i at FB-levels! Discount factor is still high enough for $n^* (\theta^l)$ to be enforceable.

Optimal effort in low periods immediately following a high period is not sequentially optimal.

“Differential punishment of on-path and off-path principal”
Intermediate δ

Proposition: There exist discount factors $\underline{\delta}$ and $\overline{\delta}$, with $0 < \underline{\delta} < \overline{\delta} < 1$, such that, in an optimal equilibrium, for $\delta \in (\underline{\delta}, \overline{\delta})$, n^h and n^l_0 are inefficiently low; for all $i \geq 1$, $n^l_i = n^*(\theta^l)$.

(ECh) binds; need to reduce n^h.

n^l_0 is also reduced! \Rightarrow Cost of not telling the truth in high state goes up; “transferring effort from low to high state”

n^l_i at FB-levels! Discount factor is still high enough for $n^*(\theta^l)$ to be enforceable.

Optimal effort in low periods immediately following a high period is not sequentially optimal.

“Differential punishment of on-path and off-path principal”

\Rightarrow Implicit Downsizing Costs
Conclusion
Conclusion

- Relational Contracts With Private Information
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**

Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
 - History dependence only via distance to last h-period
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
 - History dependence only via distance to last h-period
 - For high δ, get FB
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
 - History dependence only via distance to last h-period
 - For high δ, get FB
 - For intermediate δ, get implicit downsizing costs
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
 - History dependence only via distance to last h-period
 - For high δ, get FB
 - For intermediate δ, get implicit downsizing costs
 - In l-period immediately following an h-period, labour input is reduced beyond efficient measure
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
 - History dependence only via distance to last h-period
 - For high δ, get FB
 - For intermediate δ, get implicit downsizing costs
 - In l-period immediately following an h-period, labour input is reduced beyond efficient measure
 - This reduces the distortions in *previous* periods only; increases the firm’s commitment and thereby profits!
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
 - History dependence only via distance to last h-period
 - For high δ, get FB
 - For intermediate δ, get implicit downsizing costs
 - In l-period immediately following an h-period, labour input is reduced beyond efficient measure
 - This reduces the distortions in previous periods only; increases the firm’s commitment and thereby profits!
 - Reduction of labour input not sequentially optimal!
Conclusion

- **Relational Contracts With Private Information**
 - Non-verifiable yet observable effort over time
 - P has private info about next period’s labour productivity

- **Profit-Maximizing PPE**
 - Agent never gets a rent
 - History dependence only via distance to last h-period
 - For high δ, get FB
 - For intermediate δ, get implicit downsizing costs
 - In l-period immediately following an h-period, labour input is reduced beyond efficient measure
 - This reduces the distortions in *previous* periods only; increases the firm’s commitment and thereby profits!
 - Reduction of labour input not sequentially optimal!
 - On-path destruction of surplus (even though private info is one-sided)
• Bull (1987); MacLeod & Malcomson (1989)
• Levin (2003)
• Halac (2012): P has private info about his (persistent) outside option.
• Li & Matouschek (2013): P has private information about cost of compensating the agent.
• Malcomson (2015): P has private info about the value of A’s effort in the current period; A has private info about costs.
• Malcomson (2016): A’s persistent cost type is private information; full separation not possible when continuation payoffs are on the Pareto frontier.