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Abstract

We study social learning from actions and outcomes. Agents learn about future returns

through privately observed signals, others’ investment decisions and public experimen-

tation outcomes when returns are realized. We characterize symmetric equilibria, and

relate the extent of strategic delay of investments in equilibrium to the primitives of

the information structure. Agents invest without delay in equilibrium when the most

optimistic interim belief exceeds a threshold. Otherwise, delay in investments induces

a learning feedback that may either raise or depress beliefs and investment choices. We

show that, although ours is a strategic-experimentation game of pure informational

externalities, private information may increase ex-ante welfare.
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1 Introduction

Learning from peer experience is an important contributor to the proliferation of innovative

technology, thus promoting economic development and growth. That observational learning

plays a crucial role in the diffusion of innovation is empirically well-documented. Health

professionals learn about medical innovations from the experience of their colleagues (Becker,

1970), households learn about new consumer products from friends and neighbors (Liu et al.,

2014; Goolsbee et al., 2002), farmers learn about the qualities of new types of crop from

the performance of their peers (Conley and Udry, 2010) and law-makers take into account

the experience with legislation in other countries (Aidt and Jensen, 2009). The economics

literature typically assumes that agents learn exclusively from the behavior of others, or

exclusively from their own, and others’ experiences. In reality, however, learning through

observation often involves both channels. Think for instance of a farmer who updates his

belief about a new type of crop by observing both the adoption behavior of a neighboring

farmer and his yield. A physician may likewise learn about the effectiveness of a new drug

both by observing that her colleagues prescribe it, and from the health outcomes of their

patients.

In this paper, we study how such peer learning effects influence the timing of invest-

ments in new technologies. We consider a dynamic investment model in which two agents

are privately informed about the value of a new technology, and they must choose whether

and when to invest in adopting it. Adopting the technology generates a positive return, but

there is also the possibility of a disastrous failure that may occur at an unknown time. De-

laying the investment allows agents to observe each other’s actions and experiences, thereby

acquiring additional information without facing the risk of failure. There are two crucial

features that characterize the interaction between agents. First, learning from actions and

outcomes creates a signaling motive. By behaving in a way that signals good news about

the technology, agents can encourage one another to invest early, and profit from observing

one’s opponent’s returns. Second, there are no payoff externalities, that is, one agent’s in-

vestment decision does not directly affect the other’s payoff. We furthermore deliberately

restrict attention to the case of substantial investment costs, in order to rule out the use of

sophisticated punishment strategies, thus allowing us to focus on the effects resulting from

information spill-overs. We address the following questions in this setup: How do these

learning spillovers influence the agents’ incentives to invest and how are these incentives

affected by the strength of private beliefs? Under what conditions is private information

revealed in equilibrium and is it revealed instantly or over time? Does private information
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increase or decrease efficiency compared to a scenario in which all information is public?

We show that information asymmetry among agents can increase investment efficiency.

It is well known that informational spill-overs may result in inefficiently late investments.

In settings in which agents learn through others’ actions, they have an incentive to wait to

observe what others do, which may lead to herding, and a failure of information aggregation

(Chamley and Gale, 1994). When agents learn exclusively by observing others’ payoffs, they

have an incentive to wait for others to invest first, and then learn about the benefits of

the investment from their experience. When agents learn from actions and payoffs under

asymmetric information, one might expect these two forms of inefficiency to reinforce each

other. However, we show that, when agents learn from others’ actions and payoffs, these

inefficiencies are mitigated.

To show this, we compare the surplus generated in an equilibrium with private infor-

mation to that of a benchmark scenario in which the players are assumed to share their

information truthfully. The agents’ equilibrium behavior for the case of private information

depends on their prior beliefs and the precision of their private information. When private

information is accurate or prior beliefs high, optimistic agents invest immediately. This in-

duces pessimistic agents to invest more aggressively to signal positive news to their opponent

and encourage investment. Compared to the benchmark case, the pessimistic agent’s signal-

ing incentive increases his incentive to invest. When private information is very noisy and

agents are initially not very optimistic, by contrast, the optimistic agents are hesitant and

engage in a war of attrition, which delays their investment. Since only the optimistic types

do so while pessimistic types stand by, the equilibrium gives rise to a positive feedback loop.

The longer investment is delayed, the more agents become convinced that their opponent is

a pessimist. In this way, information transmission and investments accelerate over time.

We thus conclude that private information can speed up the adoption of new, potentially

risky, technologies in welfare-enhancing ways, while sharing of information can stifle adop-

tion. This result has both normative and positive implications for a range of applications

beyond the adoption of potentially risky new technologies. For instance, should countries

exchange their prior information, based on which they evaluate the adoption of a risky tech-

nology, such as nuclear power generation, a new medical drug or vaccine? Is it in the lenders’

interests to share their information about a given borrower? Our analysis suggests that the

answers to these questions are far from clear-cut, as the welfare gains in terms of informa-

tion aggregation stemming from the disclosure of private information may be outweighed by

losses arising from exacerbated free-riding incentives.
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1.1 Literature Review

We model experiential learning using the strategic exponential bandit framework (Keller

et al., 2005). A key insight in this literature is that with publicly observable experimenta-

tion, learning tends to be inefficiently slow, as the agents have an incentive to delay invest-

ment to free-ride on the information provided by others. Keller and Rady (2015) considers a

“bad-news” learning variant similar to ours, in which players face the possibility of a random

breakdown. In contrast to our paper, however, players have no private information, and pay-

offs are publicly observable. Bonatti and Hörner (2017) studies a variant of this model with

public payoffs and private actions. They show that players are more prone to deviating to

shirking experimentation than with publicly-observed actions, because, with public actions,

such a deviation makes players more pessimistic than they would be absent the deviation,

and hence less inclined to experiment. Thus, privately observed actions lead to lower ex-ante

expected welfare.1 In our setting, in contrast, an informational asymmetry arises due to pri-

vate signals at the outset, while actions are publicly observed. In this regard, our setup is

more similar to Décamps and Mariotti (2004), which considers a strategic-experimentation

model in which players are privately informed about their own costs. Players prefer their

opponent to invest first, as this generates public information about the payoff-relevant state.

They show that private information about costs exacerbates the free-riding problem, because

players have an additional incentive to delay investments in order to convince each other that

they face a high cost. The players’ incentives thus work in the opposite direction from our

paper, as we assume that private information relates to the payoff-relevant state, which gives

players an incentive to invest earlier to signal optimism.2

A second strand of literature, following Bikhchandani et al. (1992b) and Banerjee (1992),

studies aggregation of private information through “social learning” from the actions of

others. A key insight is that observational learning from actions fails to aggregate private

information because agents’ private information may be outweighed by what they have ob-

served. Thus, they have an incentive to ignore their own private information and to follow

the “herd” when choosing their (observable) action, implying that their private information

is never revealed. Chamley and Gale (1994) and Murto and Välimäki (2013) consider invest-

1Bonatti and Hörner (2011) analyze strategic experimentation with private actions in a good-news setting,
and show that, in that setting, players are more prone to shirking when actions are observable. Thus, ex-ante
expected welfare is higher when actions are not publicly observed in that setting.

2In Bobtcheff and Levy (2017), the firm also has an incentive to signal optimism to the capital market.
The firm privately knows the arrival rate of private, fully conclusive, pre-investment bad news, and signals
optimism by investing early.
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ment models of social learning in which the time of an agent’s observable and irreversible

decision is endogenously determined in equilibrium. In both papers, information is ineffi-

ciently aggregated because investors have incentives to delay their respective exit decisions so

as to acquire more information by observing the behavior of others.3 In our paper, strategic

delay occurs as well, but it is driven by the players’ incentive to free-ride on each other’s

experimentation. We show that this delay is mitigated when players have an incentive to

signal optimistic private information about the underlying state.

Following Rosenberg et al. (2007), several papers, such as Murto and Välimäki (2011)

and Rosenberg et al. (2013), analyze strategic experimentation with privately observed pay-

offs. In these papers, the players’ only choice is an irreversible stopping decision. Due to

the irreversibility of exit, there are no free-riding incentives, and thus public information is

unequivocally good for welfare in these settings. In contrast, we show that, when players’ ac-

tions are reversible, private information among agents counteracts the free-riding incentives

and can thus be welfare-enhancing. Heidhues et al. (2015) investigate the role of communica-

tion in a setting with private payoffs and reversible, publicly observable, actions, allowing for

cheap talk between players. They show that experimenting agents can use communication as

a tool to incentivize effort by threatening to withhold future information, thereby increasing

total surplus relative to the public-information benchmark. In our paper, in contrast, actions

and payoffs are publicly observed, and players motivate each other by signaling optimism.

More similar to our setting, Dong (2021) introduces a privately informed player into

the good-news exponential-bandit setting of Keller et al. (2005). In particular, actions and

outcomes are publicly observable, and one player observes a private signal about the payoff-

relevant state at the outset. Consistently with our findings, Dong (2021) shows that the

informed player has an incentive to experiment more aggressively so as to signal optimism.

Yet, due to the informed player knowing all available information, there is no problem

regarding information aggregation, and, as a result, the author finds that private information

is better than public information when signals are very informative. In contrast, we show

that when both players receive private signals, the failure of information aggregation can lead

to large social losses when signals are very precise, and thus the encouragement that arises

due to private information leads to welfare improvements if signals are not too informative.

A number of papers consider learning from others’ actions and outcomes in models with

additional application-specific payoff externalities. Moscarini and Squintani (2010) consid-

3Ex-ante welfare may be improved in these settings by introducing taxation to make early investments
more informative (Heidhues and Melissas, 2012), or by promoting communication between players, Gossner
and Melissas (2006).
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ers a model of a winner-takes-all R&D competition in which firms observe an initial private

signal and decide when to exit irreversibly. They show that the aggregate duration of exper-

imentation is longer under private information. Since the players’ only decision is the time

of their irreversible exit, there are no signaling motives, in contrast to our setting. Bobtcheff

et al. (2021) studies a winner-takes-all model with “bad-news” learning. They show that

public information about payoffs is detrimental when competition between players is strong.

Cetemen (2021) analyzes a continuous-time, two-player, team-production problem with

initial private information and a finite deadline. Specifically, the players’ payoff flows depend

on the product of the unknown state of the world and the sum of their efforts. At each

instant, players choose among a continuum of actions; throughout, they observe a noisy

signal of aggregate effort, while only observing payoffs at the end. Cetemen (2021) shows

that signalling incentives counteract free-riding incentives, enabling an approximation of the

first best if there is no discounting and the time horizon is sufficiently long, so that a setting

with private information may be welfare-superior. In our paper, we show that, by virtue of

a similar positive welfare effect of signalling, less initial information can be better even in

a model of pure (positive) informational externalities. In Margaria (2020), agents’ private

signals arrive over time and represent fully conclusive bad news. Thomas (2020) studies

strategic experimentation with privately observed payoffs when players compete for the use

of a single shared safe arm, and finds that, for many priors, experimentation is more efficient

than with public payoffs. Indeed, it is shown that signaling incentives counteract free-riding

incentives, and that a setting with private information may as a result be welfare-superior. In

our paper, we show that, by virtue of a similar positive welfare effect of signalling, less initial

information can be better even in a model of pure (positive) informational externalities.

The potential welfare gains from private information are driven by signaling incentives

and an effect that has been labeled the“smoothing effect of uncertainty”(Morris and Shin,

2002). Welfare gains through signaling incentives have been shown by Hermalin (1998) in

a static team-production model with payoff externalities. Teoh (1997) demonstrates how

uncertainty can improve welfare in a model of public-good provision, where the marginal

return to agents’ investments is determined by an uncertain state of the world. The author

shows that non-disclosure of information may increase ex-ante welfare when the investment

has marginally diminishing returns because the loss resulting from a reduction in investment

after the release of bad news outweighs the benefits from increased investment when the

information is favorable. This mechanism is also present in our paper: when bad news

is publicly disclosed, free-riding increases, leading to an over-proportional reduction in the
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expected value of an investment.

2 Model

There are two agents, indexed i = 1, 2. Time t ∈ R+ is continuous, with an infinite horizon.

Future payoffs are discounted at the common discount rate r > 0.

Risky investment Each agent decides when to invest an amount I > 0 to initiate a project

with uncertain returns. The project generates a stochastic payoff stream that depends on an

unknown state of the world θ ∈ {G,B}, which is either “good” (θ = G) or “bad” (θ = B).

While the project is operational, it yields a flow return of y > rI in either state. However,

when the state is bad, publicly observable accidents occur at random times corresponding

to the jump times of a time-homogeneous Poisson process with parameter γ > 0. Accidents

never occur in state G. Conditionally on the state being B, the arrival times of accidents are

independent across agents. An agent whose project causes an accident incurs a lump-sum

cost of c > 0. We assume that each agent can abandon and reinvest in the project at any

time.

Prior information The prior probability that the state is good is given by p0. Players

observe some additional information in the form of binary signals s1, s2 ∈ {h, l}, which are

i.i.d. conditionally on θ. The probability that the signal is h (high) in state G is equal to

the probability that it is l (low) in state B; we denote this probability by ρ ∈ (1
2
, 1).

Structure of the investment game We model the continuous-time environment as a

repeated stopping game with multiple “phases.” At the beginning of the first phase, the

agents decide how long to wait before making the investment, conditionally on the other

agent not having invested yet. The initial stage ends after the first agent invests or both

invest simultaneously. If only one agent invests, then the agent who invested is called the

“leader,” and the other the “follower.” In the second phase, each agent who invested decides

if and when to exit while an agent who did not invest decides when to enter, each conditionally

on the other agent not moving first. Later phases proceed in a similar fashion. We assume

that γc > y, so that after an accident has arrived and players have learned that θ = B, it

is a dominant action for players not to invest, or, respectively, to exit a prior investment

immediately. We take this as given in our subsequent analysis, and treat all histories following

an accident as terminal histories.
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Histories and Strategies We define an investment history at time t ≥ 0 to be a profile

ht = ((S1, τ1), . . . , (Snt , τnt)) with 0 ≤ τ1 ≤ . . . ≤ τnt ≤ t, where τk for each k = 1, . . . , nt

represents a “switching time” at which each agent in Sk ⊆ {1, 2} has changed his investment

decision, and nt ∈ N represents the total number of instances of such changes in the past.

We make the technical assumption that, at each instant, entry is observed before exit, so

that when two agents switch at the same time in opposite directions, play proceeds to the

phase corresponding to only the entering agent switching.

We refer to nt as the number of phases at history ht. A behavioral strategy for agent

i is then given by a family of cumulative distribution functions {Fi(·|si, ht)}ht∈Ht with

Fi(t
′|si, ht) = 0 for all t′ < τnt . Here, Fi(t

′|si, ht) represents the probability that agent i

with signal si takes action (invests or exits) before or at time t′ ∈ [τnt ,∞] following invest-

ment history ht, conditionally on the other agent −i not taking action before t′.

Payoffs A profile of behavioral strategies induces a distribution over switching times for

each agent i. Denoting by (τ ik)k∈N the random investment and exit times for player i, the

expected normalized payoff for agent i at any time t is

Et

[
∞∑
k=1

(∫ τ i2k∨t

τ i2k−1∨t
e−r(ξ−t)r(y − 1{θ=B}γc)dξ − 1{τ i2k−1>t}e

−r(τ i2k−1−t)rI

) ∣∣∣ si, ht] . (1)

We say that an agent is “invested” at any history at which he has performed an odd number

of switches. Otherwise this agent is called “out.” While agent i is “out,” i.e., on time

intervals (0, τ i1), (τ i2, τ
i
3), · · · , (τ i2k, τ i2k+1), he accrues no payoff.4

Equilibrium concept The posterior belief of player i = 1, 2 is a joint probability dis-

tribution in [0, 1]2 over the state θ and the other agent’s signal. We focus on symmetric

perfect Bayesian equilibrium. A perfect Bayesian equilibrium is a pair of behavioral strate-

gies, together with a belief system for each agent, which assigns a probability distribution

over signals and the state of the world at each history, such that (i) each agent’s strategy

maximizes his expected payoff, given his belief over the state and the other agent’s signal

and (ii) beliefs are updated via Bayes’ rule at any history that lies in the support of the

distribution over histories induced by the agents’ strategies. We shall say that a perfect

Bayesian equilibrium is symmetric if the players’ equilibrium strategies prescribe the same

(mixed) action whenever they have the same beliefs and are in the same mode, that is, they

4We assume that any history with an infinite number of switches gives both players a payoff of −∞.
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are either both invested or both out.5

Throughout, we assume that the investment cost I that is required to initiate a project is

large enough to ensure that agents remain invested after they initiated their project (unless

an accident occurs), even if the other agent deviates from his equilibrium strategy.

Notation Throughout, we denote by pt the (history-dependent) public posterior belief

that θ = G at time t, i.e., the belief held by a hypothetical outside observer, who started out

with a prior belief of p0 and observed the public history but did not know the realizations of

the initial signals. By the same token, we denote by qit the public posterior belief assigned to

agent i’s type being g (we omit the index i whenever the belief is the same for each agent).

Furthermore, we write pt(s) and qit(s) for the respective posterior probabilities conditional

on a single signal s ∈ {g, b}, and, analogously, pt(s, s
′) for the posterior probability about

the state, conditional on a pair of signals (s, s′) ∈ {g, b}2. Note that, since signals are i.i.d.

and symmetric, we have pt = pt(g, b) = pt(b, g).

3 Planner solution

We begin by considering the case of a planner who chooses investment times in order to

maximize the sum of the agents’ payoffs based on the realizations of both signals. The

agents thus share a common belief at the outset, and we denote their common belief by

p̌0 := p0(s1, s2). The agents’ shared belief about the realization of the state of the world is

updated based on the observed actions and payoffs once the first agent makes an investment

and triggers a payoff flow. In the absence of any accidents following an investment, the

posterior belief p̌t continuously evolves following the differential equation

dp̌t
dt

= ktγ p̌t(1− p̌t),

where kt ∈ {1, 2} denotes the number of players being invested at instant t. The posterior

belief thus gradually increases as long as no accident occurs; it is not surprising therefore that

it is socially optimal for an agent to remain invested indefinitely until an accident occurs.

Whether or not investing is socially optimal thus depends on the initial belief p̌0. To state

5While our definition of symmetry may be reminiscent of Markov perfect equilibrium, it is in fact more
permissive, in the sense that it allows players to choose different (mixed) actions at different histories even
if they lead to the same belief and mode; symmetry only requires that they both choose the same mixed
action at all histories at which they have the same beliefs and are in the same mode.
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the following theorem, which characterizes the socially optimal investment strategies,

we define the log-likelihood ratio φ(p) := ln(p)− ln(1− p).

Theorem 1 (Planner Solution). There exist thresholds p∗1 ∈ (0, 1) and p∗2 with p∗1 < p∗2 < 1,

so that it is socially optimal for both agents to invest immediately if p̌0 ≥ p∗2 and never to

invest if p̌0 < p∗1. If p∗1 ≤ p̌0 < p∗2, it is socially optimal for one agent to invest immediately,

and for the second agent to invest with delay τ s(p̌0) = (φ(p∗2)− φ(p̌0))/γ.

All proofs are found in the Appendix. The theorem shows that staggered investment is

optimal for intermediate values of the interim beliefs due to investment costs. Since the initial

investment costs required to start a project cannot be recovered after a failure, it is socially

preferable to start only one project initially, which then generates a flow of information on

which the start of the second project can be conditioned. In this way, staggered investment

lowers the loss from making effectively irreversible investments in the bad state.

4 Equilibrium analysis

We now consider the setting in which the agents choose the timing of investments strategically

and study how the distribution of information affects equilibrium investments. First, we

analyze the case of public information, in which the signals are made public at the beginning

of the game. Then, we consider the case of private information in which each agent observes

a signal.

We start with a preliminary result. Consider a history at which one agent is invested

(k = 1). The follower benefits from the leader’s experimentation in this case, because of the

possibility that the leader experiences an accident. If the leader experiences an accident, the

follower learns that the state of the world is bad without incurring any losses. Depending

on the follower’s posterior belief about the state, it may thus be profitable for him to delay

the investment. Assuming that the follower delays his own investment by some duration τ

(at which he is sufficiently confident that the state is good), the expected net present value

before paying investment costs I for the leader at any belief p is given by

vl(p, τ) = py + (1− p)
(
(1− e−(r+γ)τ )λ1 + e−(r+γ)τλ2

)
(y − γc)− rI, (2)

where by λk = r/(r + kγ) we denote the marginal value of a discounted unit payoff stream

up to termination at a random time arriving at constant rate kγ for k = 1, 2. By the same
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token, assuming that the leader remains invested indefinitely, the expected present value of

the follower when delaying the investment by a duration τ is given by

vf (p, τ) = e−rτpy + e−(r+γ)τ (1− p)λ2(y − cγ)− (p+ (1− p)e−γτ )e−rτrI. (3)

The following lemma reports basic properties of the functions vl and vf .

Lemma 1. The function vl(p, τ) is linearly increasing in p, convex and decreasing in τ for

every p ∈ (0, 1) and supermodular in (p, τ). The function vf (p, τ) is linearly increasing in p

and has a single peak in τ at

τ ∗(p) =


(
φ(p∗f )− φ(p)

)
/γ if p < p∗f

0 if p ≥ p∗f

(4)

for every p ∈ (0, 1), where

p∗f =
λ1(r + γ)I + λ2(γc− y)

λ1(y + γI) + λ2(γc− y)
. (5)

Moreover, we have vl(p, τ) ≤ vf (p, τ) which holds with equality if and only if τ = 0.

In addition to characterizing the values of investment for the leader and the follower,

respectively, the lemma provides a characterization of the follower’s optimal delay τ ∗(p),

which is the time it takes for the belief to travel from p to p∗f , given one agent remains

invested and no breakdown occurs. The fact that the follower value is greater than the

leader value at any belief p < p∗f shows that information spill-overs generate a second-mover

advantage.

We write v∗f (p) = vf (p, τ
∗(p)) and v∗l (p) = vl(p, τ

∗(p)) for the values of the leader and the

follower, respectively, given the follower uses the optimal delay. Since τ ∗ is weakly decreasing

in p, and vl and vf are strictly increasing in p as well as decreasing in τ , it follows that v∗l and

v∗f are strictly increasing functions in p. Moreover, v∗l is continuous, positive if p = 1, and

negative if p = 0. Hence, it has a unique root on (0, 1), which we denote by p∗l . Note that,

by definition of p∗f and p∗l , we have v∗f (p
∗
f ) = v∗l (p

∗
f ) > 0 and thus p∗l < p∗f .

6 One furthermore

shows that p∗1 < p∗l and p∗2 < p∗f .

6That p∗l < p∗f is somewhat related to the effect in Melissas (2005), where slower information production
later boosts current information production.
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4.1 Public Information

We now study the case of full disclosure in which both agents observe the realization of

both signals, focussing on symmetric equilibria. As indicated above, there is a second-mover

advantage to investing due to information spill-overs: each agent prefers to learn from the

experience of the other and to avoid losing money on a failing investment. This second-mover

advantage provides each agent with an incentive to strategically delay his investment in the

hope that the other agent invests first.

For an intermediate range of beliefs, this results in the agents choosing the timing of their

investment at random in equilibrium, namely at a constant rate that renders the other agent

just indifferent between investing immediately and delaying the investment by an instant.

In order to state the theorem, which, for high investment costs I, characterizes the unique

symmetric equilibrium for symmetrically informed agents, we define

β∗(p) = max

{
rv∗l (p)

v∗f (p)− v∗l (p)
, 0

}
. (6)

The equilibrium is then given as follows.

Theorem 2 (Public information). There exists I∗ ∈ (0, y/r) such that, for all I > I∗,

there is a unique symmetric equilibrium, in which neither agent exits before the arrival of an

accident. In this equilibrium, for all times t ∈ [0,∞), on path as well as off path:

1. If p̌t ≥ p∗f , both agents invest immediately.

2. If p∗l < p̌t < p∗f , each agent invests at constant rate β∗(p̌0) given by Equation (6) in the

first phase, while the follower starts the project with delay τ ∗(p̌0).

3. If p̌t ≤ p∗l , neither agent invests.

The basic equilibrium structure mirrors that of the symmetric equilibrium in Keller and

Rady (2015), in the sense that there are two belief thresholds with the property that there

is no experimentation below the first, and maximum experimentation above the second

threshold, with randomization for all beliefs that lie between these thresholds. While the

equilibrium shares the property of staggered investments with the planner’s solution, there is,

in contrast to the planner’s solution, a period of inefficient delay prior to the initial investment

for beliefs p̌0 ∈ (p∗l , p
∗
f ). Moreover, the equilibrium exhibits too little experimentation relative

to the efficient benchmark. On the one hand, since p∗1 < p∗l , there are values of the interim

12



belief at which experimentation is socially valuable but does not arise in equilibrium. Second,

since p∗2 < p∗f , delay of the second investment is inefficiently long. Inefficiencies arise in

equilibrium due to free-riding incentives: agents benefit from the information generated

by their competitor’s experimentation, failing fully to internalize the social value of their

own experimentation. The incentive to free-ride thus leads to inefficiently long delays in

investment by the follower and sluggish initial investment, as each agent prefers the other

one to invest first. For intermediate prior beliefs, the first phase of the game is strategically

related to “war-of-attrition” games (see, e.g., Bulow and Klemperer, 1999), which are timing

games in which the players incur a cost until their time of exit, and reap a reward if they

endure the cost longer than their opponent.

4.2 Private Information

We now turn to equilibria in the case of private information, in which each agent privately

observes a single signal. The equilibria differ from the case of publicly observed signals in

that the presence of private information exacerbates uncertainty and introduces signaling

incentives.

In the equilibria we characterize, the way private information is revealed depends crucially

on whether the most optimistic interim belief p0(g, g) exceeds the follower threshold p∗f or not.

If p0(g, g) ≥ p∗f , optimistic agents invest without delay, so that all private information that

is revealed in equilibrium is revealed in a lump at time zero. Otherwise, optimistic agents

delay their initial investment while pessimistic agents wait, so that private information is

aggregated continuously over time.

The following result characterizes three different classes of equilibria and conditions for

their existence that depend on the prior belief p0 ∈ (0, 1) and the signal precision ρ ∈ (0.5, 1).

While we restrict ourselves to high investment costs I, the theorem covers all combinations

of the parameters (p0, ρ). Note that, depending on the parameters, the rate β∗(p0(b, b)) may

be 0.

Theorem 3 (Symmetric equilibrium with private information). There is a I∗∗ ∈ (0, y/r)

such that, for all I > I∗∗, there exists an equilibrium in which no agent exits after having

been invested for a positive amount of time prior to an accident, followers’ delay is given by

the function τ ∗ applied to their belief about θ, and the following holds.

(1.) Suppose p0 ≥ p∗l and ρ ∈ (0.5, 1) are such that p0(g, g) ≥ p∗f . Then, there exists a

symmetric equilibrium in which type g invests immediately. Type b of each agent invests
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immediately with some probability η∗ ∈ [0, 1], while with probability 1− η∗, he invests at

a random time arriving at constant rate β∗(p0(b, b)).

(2.) Suppose p0 < p∗l and ρ ∈ (0.5, 1) are such that p0(g, g) ≥ p∗f . Then, there exists a

symmetric equilibrium in which type g invests immediately with some probability ν∗ ∈
[0, 1), while with probability 1− ν∗, he does not invest. Type b never invests.

(3.) Suppose p0 > 0 and ρ ∈ (0.5, 1) are such that p0(g, g) < p∗f . Then, there exists a

symmetric equilibrium in which type g of each agent invests at rate µ∗t ≥ 0 given by

(23). Type b delays investment until (possibly infinite) t∗ > 0, given by (24), and invests

at constant rate β∗(p0(b, b)) thereafter.

We refer to the first two types of equilibria as equilibria with “immediate investment,”

and to the latter as an equilibrium with “delayed investment.” Whether the equilibrium

exhibits delayed investment depends on the relative location of p0(g, g) vs. p∗f .

Equilibria with immediate investment arise either when signals are very informative or

if the prior belief is very high. Such equilibria may be pooling, partially separating, or fully

separating. A high prior belief and weak signals result in pooling, where each agent invests

immediately.

Indeed, if the interim belief of pessimistic agents, conditional on their own signal, is high

enough, then it is always optimal for them to invest immediately. On the other hand, when

signals are highly informative, the equilibrium tends to be partially or fully separating.

Intuitively, an informative good signal provides a strong incentive for an agent to invest,

while an informative bad signal makes investing costly. However, immediate investment

communicates good news that makes one’s opponent more willing to invest, which, in turn,

generates a positive informational externality. As a result, pessimistic agents have incentives

to pretend to be optimistic, in order to encourage the other agent to experiment.

Equilibria exhibit delayed investment when the prior is not too high and signals not

too informative. In an equilibrium with delayed investment, optimistic agents engage in

an attrition game, while pessimistic agents simply wait; indeed, as in the case of public

information, optimistic agents delay investment because they benefit from the possibility

that their opponent invests first and subsequently provides free information.

In contrast to the case of public information, however, in equilibrium, an optimistic agent

invests at a rate that keeps his opponent’s optimistic type indifferent, irrespectively of his

opponent’s true type, while, with public information, agents keep each other’s true types

indifferent. Moreover, because only optimistic agents invest with positive probability, the
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Figure 1: Three branches of equilibrium investment rates (left panel) and the corresponding
evolution of the belief (right panel).

agents learn about one another’s types while they wait. As long as neither agent invests,

each agent becomes gradually more certain that the other one has observed a bad signal.

This gradual change in beliefs about the other’s type, in turn, affects the agents’ incentives

to invest. The interaction between belief updating, incentives and actions thus creates a

learning feedback loop that either accelerates or dampens the speed of learning.

The effects of the feedback loop can be seen in the dynamics of the investment rates

illustrated in Figure 1. Here E[Vθ(si, s−i)] denotes the expected equilibrium payoff from being

a leader in state θ for an agent with signal si, when his opponent’s signal is s−i. The upper

branch in the left panel of the figure corresponds to the case in which the expected equilibrium

payoff E[Vθ(g, b)] > 0 from being an optimistic leader, conditional on the opponent’s signal

being bad —i.e., the worst possible payoff for type g— is positive. Note that this expected

payoff is independent of time, since the signal pair (si, s−i) encapsulates all information that

is exchanged in the first phase, so that pt(si, s−i) = p0(si, s−i). In this case, an agent of

type g wants to invest regardless of his opponent’s type. In equilibrium, each optimistic

agent invests at a rate that makes his optimistic opponent just indifferent between investing

and waiting. The longer an optimistic agent waits for the other to invest first, the more

convinced he becomes that the other’s delay is due to his signal being bad. In equilibrium,

therefore, optimistic agents must increase their rates of investment in order to continue to

make the good type of the other agent indifferent.

This increase, in turn, accelerates the decline in beliefs, as shown in the lower branch

of the right panel of Figure 1, which requires a further increase in the investment rate of
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optimistic agents. The result is an escalating feedback-loop between investment and learning

rates, which causes investment rates to shoot off to infinity by some finite time t∗, so that

all private information is revealed by t∗.

The lower branch in the left panel of Figure 1 corresponds to the case in which type

g’s worst-case continuation payoff E[Vθ(g, b)] from an immediate investment is negative. As

before, the longer an optimistic agent waits for the other to invest first, the more convinced

he becomes that the other’s deferral is due to his signal being bad.

In order for optimistic agents to continue to be indifferent between waiting and investing,

they must now decrease their rate of investment gradually. This reduction again triggers a

feed-back loop, in which decreasing investment rates slow down learning, as shown in the

upper branch of the right panel of Figure 1, which in turn dampens investments and so

on. Investment rates eventually tend to 0 and the agents’ private information is never fully

revealed.

If E[Vθ(g, b)] = 0, finally, a type-g agent would be indifferent between investing and

staying out if he knew his partner to be of type b. In this case, agents of type g invest at

a constant rate in equilibrium, so that agents’ beliefs that their partner is of type g decline

over time, yet all private information is only revealed in the limit as t→∞ as shown in the

middle branch of the right panel of Figure 1.

4.3 Welfare comparison: public vs. private information

In comparing the equilibrium outcomes with and without information asymmetries, it is

natural to ask which environment is more desirable from an efficiency standpoint. Näıve

logic may suggest that more transparency should unambiguously lead to better outcomes,

as it allows the agents to make better-informed decisions. The World Medical Association’s

“Ethical Principles for Medical Research Involving Human Subjects,” for instance, state

that “Researchers have a duty to make publicly available the results of their research on

human subjects.”7 While there may be many good reasons for such a policy, which are

not captured by our model,8 they may conceivably be to some extent counter-balanced by

the aforementioned positive side-effects of private information (though these countervailing

effects are unlikely to be of first-order importance in the case of medical-drug trials).

7Available at https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-
medical-research-involving-human-subjects/ (accessed on June 25, 2020). We are indebted to Kaustav Das
for pointing this out to us.

8E.g., if pharmaceutical firms were allowed only to disclose favourable test results, these would be very
hard to interpret if one did not know how many unfavourable test results they may have received.
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We find that private information is socially preferable if investment costs are substantial,

the prior belief that the state is good is high enough, and the signals are not too informative.

Indeed, denote by W0(s1, s2) the expected social surplus generated in the unique symmetric

equilibrium under public information, when p0(s1, s2) is the common initial belief that the

state is good. Let W̃ denote the ex-ante expected social surplus generated in a symmetric

equilibrium in which each agent’s signal is private information. We then have the following

Theorem 4. Fix p0 > p∗l . There exists ρ∗ > 1/2 and Ī ∈ (0, y
r
) such that, for all signal

precisions ρ ∈ (1/2, ρ∗) and investment costs I ∈ (Ī , y
r
), we have W̃ ≥ E[W0(s1, s2)]. For

p∗l < p0 < p∗f , the inequality is strict.

Theorem 4 states that private information is more desirable from an efficiency perspective

if (1) the prior information is sufficiently optimistic, and (2) signals are not too informative.

Indeed, for these parameters, there is under-investment in expectation under symmetric

information, and the informational asymmetry leads to increased expected investment rates.

If signals are very informative, by contrast, free-riding is not a big problem under symmetric

information, which may perform better in this case. Indeed, if p0 ≥ p∗f , for instance, the

equilibrium in Part (1.) of Theorem 3 amounts to a pooling equilibrium in which players

always invest right away. Yet, if ρ is high enough that p0(b, b) < p∗1, this amounts to inefficient

over-investment, as players ought to refrain from investing if they both receive a bad signal,

an outcome that is achieved under symmetric information only. By the same token, if the

prior belief p0 < p∗l , asymmetric information will lead to less investment than symmetric

information—this will be the case, for instance, in the equilibrium of Part (2.) of Theorem

3.

The condition on the parameters ensures that it is socially optimal for both agents to

invest (though it may be socially optimal for the second investment to occur with delay). If

p0 ≥ p∗f , there always exists a range of signal precisions guaranteeing that both types of agent

invest immediately under private information, as in the efficient benchmark. If p∗l < p0 < p∗f ,

then there are signal precisions such that the symmetric equilibrium under public information

has delayed entry. In this case, a mixed-strategy equilibrium arises both under public and

private information. In this equilibrium players invest at a rate that keeps the actual type

of their opponent indifferent, if information is public. If information is private, by contrast,

type g of player i invests at a rate that would keep type g of player −i indifferent, even if

player −i happens to be of type b. The proof establishes that, for certain parameters, the

welfare benefit of this increased investment rate of the g-types will overwhelm the welfare loss
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both from the reduced investment rate of b-types and from players’ less precise knowledge

of the underlying state.

Finally, we should stress that Theorem 4 is indeed a novel result. It is a well-known

fact that more information can lead to socially inferior equilibrium outcomes in games with

payoff externalities, as uncertainty will typically relax incentive-compatibility constraints.

In our model, however, one agent’s actions affect the other’s belief but not his payoff, so that

the basic logic behind the widely familiar result does not apply.

4.4 Applications

4.4.1 Technology adoption

Our model of strategic investments can offer insights into the role of observational learning

in technology diffusion. An extensive body of empirical research has found contagion effects

and clustering of technology adoption decisions that are well explained by social learning.

There is evidence to this effect for a variety of markets, including workers’ saving decisions

(Duflo and Saez, 2002; Ouimet and Tate, 2020), adoption of medical innovations by physi-

cians (Burke et al., 2007; Manchanda et al., 2008; Iyengar et al., 2011), educational decisions

(Bobonis and Finan, 2009; Carrell and Hoekstra, 2010), information about job opportuni-

ties (Beaman and Magruder, 2012), health (Kremer and Miguel, 2007; Oster and Thornton,

2011), agricultural technologies (Foster and Rosenzweig, 1995; Conley and Udry, 2010), con-

sumer goods (Goolsbee et al., 2002), and policy making (Shipan and Volden, 2008; Gilardi,

2010).

A number of papers have looked specifically at the effects of learning spillovers on the rate

of technology adoption. Foster and Rosenzweig (1995) study the decisions of Indian farmers

to adopt high-yield crop varieties, and find that farmers experiment less when they are able

to observe neighbors who produce more information on average. Munshi (2004) compares

the adoption of high-yield variants between wheat and rice farmers in India, and argues

that rice farmers tend to experiment more with new crop variants because their growing

conditions are more idiosyncratic than wheat farmers’, so that they have fewer opportunities

to free-ride on their neighbors’ experience. Conley and Udry (2010) go further by identifying

the specific social links and communication patterns of pineapple farmers in Ghana in order

to relate adoption decisions to the experiences of other farmers in their network. In their

study, they find evidence that farmers adjust their inputs to align with those colleagues in

their social network who have been surprisingly successful with a novel type of crop.
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These papers view social learning purely as learning from others’ experiences, as opposed

to their beliefs or actions. There is strong evidence, however, that decision-makers are also

heavily influenced by others’ attitudes and choices. Anderson and Holt (1997) conduct a lab-

oratory experiment, and find that, consistent with the theoretical prediction of Bikhchandani

et al. (1992a), test subjects may follow the crowd rather than their prior information, thus

taking others’ actions into account when making their respective decisions. This economic

model of learning from actions has been used to explain the empirical finding that adoption

decisions are strongly influenced by “opinion leaders,” i.e., community members with a su-

perior status, knowledge or experience. Early work by Coleman et al. (1957) finds that early

adoption of a new pharmaceutical drug by respected doctors increases the rate of adoption

by other physicians. More recently, Miller and Mobarak (2015) conduct a field experiment

on the adoption of non-traditional chimney stoves in Bangladesh and show that villagers

tend to adopt more when opinion leaders unanimously adopt stoves and less when opinion

leaders reject them. Similarly, Maertens (2017) finds that farmers are influenced in their

adoption of new crops by the choices of early-adopting influential neighbors in their village.

There is also evidence that opinion leaders are aware of their role and internalize the

effect of their own decisions on the choices of their peers. Coleman et al. (1957) observes

that doctors with larger social networks tend to adopt new drugs earlier than those with

smaller networks. This is consistent with our theory that doctors with large networks have

a larger incentive to experiment with a risky technology, in order to promote their adop-

tion by peers (in our story, because they value the information their peers produce when

adopting the technology). Iyengar et al. (2011) similarly finds that physicians who are more

influential according to sociometric measures tend to adopt a drug earlier than their less in-

fluential peers. The empirical evidence thus suggests that opinion leaders’ decision whether

to experiment with a new technology is a strategic choice that trades off the cost of experi-

mentation with the personal loss from discouraging experimentation of others. Our results

indicate that, unless there is strong evidence for the quality of a new technology, facilitation

of information exchange among individuals may not increase the efficiency of information

aggregation. Indeed, we show that private information may give rise to signalling incentives,

which leads to more aggressive experimentation that counteract free-riding incentives, but

at the cost of private information being imperfectly aggregated, which in turn can lead to

socially excessive investment.

19



4.4.2 Teams and collaborations

We can also interpret our model as one of the formation of collaborations. Indeed, suppose

the agents have the opportunity to engage in a joint project, but that it is uncertain whether

it will succeed in the long run. To set up the project, the agents pay a contribution, and while

the project is operational, they enjoy a continuous benefit from their participation. However,

if the project fails, they then share the cost of remediation. Such an interpretation applies,

for example, to international cooperative projects such as the European Organization for

Nuclear Research (CERN) or the international space station ISS.

In this perspective, our model has implications for the comparison of group structures

when the adoption of potentially risky technologies is at issue. Indeed, suppose our players

could communicate at the beginning of the game. If signals were verifiable information,

as would be the case if the players’ backgrounds and expertise were similar, an optimistic

player would always reveal his signal—the situation would therefore amount to our public-

information case. By contrast, agents of vastly different background and expertise would not

be able independently to evaluate each other’s signals; communication would only be possible

via cheap talk. As players always want their opponent to think that they are optimistic,

there can be no informative cheap talk, and the situation amounts to our private-information

case.

Our analysis may thus have implications for the composition of groups working on un-

certain projects. Indeed, our results suggest that, for very uncertain projects, heterogeneous

groups will be preferable. For instance, Abbasi and Jaafari (2013) show that research col-

laborations across different institutions are more strongly positively correlated with average

yearly citations than internal collaborations. Barjak and Robinson (2008) show that the

most successful teams in the life sciences are moderately engaged in international collabora-

tions. Looking at publications in science and engineering by US-based researchers, Freeman

and Huang (2015) show that greater ethnic and locational diversity of authors leads to better

impact factors and citations.9

By the same token, while a lot of attention is focused on ways to improve the flow of

information across countries (e.g., United Nations Conference on Trade and Development,

2014; Liverani et al., 2018), our analysis shows that this need not always be desirable. Indeed,

while näıve intuition would intimate that information exchange between countries was always

9It is well known in the psychology literature (see, e.g., Bond et al. (1990)) that people detect lies more
readily within their own culture than across cultures. If lies can be detected, signals amount to verifiable
information, and we are in our public-information setting; otherwise, communication is tantamount to cheap
talk, and we are in our private-signals setting.
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beneficial for welfare, our analysis suggests that the effect can cut both ways. This is because

information exchange will remove the encouragement effects of private information that we

identify, and may thus have adverse effects on welfare, as Theorem 4 shows: as free-riding

effects are exacerbated as a result of information sharing, inefficient delays in the adoption of

the technology may worsen. We thus find that it is not a forgone conclusion that transparency

is desirable in any and all contexts; to decide whether it is requires additional arguments

arising from the particular application at hand. Indeed, our analysis suggests that private

information (heterogeneous or rotating teams) is called for when signals are none too precise,

in particular, when it is not the case that two signals may suggest a radically different course

of action from the prior information. If the latter is the case, it is better to guarantee that the

players have access to the information stemming from both signals. Thus, we should expect

heterogeneous teams to be particularly advantageous for endeavours in which progress tends

to be incremental, as would be the case in most sciences.

5 Conclusion

We propose a tractable model of strategic experimentation with private information and

bad-news learning in the presence of non-negligible switching costs. We derive the unique

symmetric equilibrium in the case of symmetric information. We proceed to construct sym-

metric equilibria for the case of privately observed signals, which exhibit either immediate

or randomly delayed investment.

Finally, we show that the welfare gain from signaling can overwhelm the welfare loss from

less precise information, so that equilibrium surplus can be higher under private information.

This suggests that some initial secrecy may be beneficial in countering under-experimentation

with a new technology that may be prone to breakdowns.

There are a number of natural extensions we do not address in this paper. For example,

we have assumed signals to be symmetric in the sense that the probability that a signal

is correct ρ does not depend on the state of the world θ. While we conjecture that our

main qualitative results would continue to hold if we relaxed this assumption and ρ were a

function of θ, the simplifications arising from pt = pt(g, b) = pt(b, g) would of course be lost.

In particular, we should expect additional case distinctions to arise, which will depend on

whether p0(g, b) = p0(b, g) > p0 or p0(g, b) = p0(b, g) < p0.

We also do not address (ex-ante) asymmetries between agents or situations with more

than two agents. For public information, we conjecture that an equilibrium with many
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agents would be characterized by an increasing sequence of belief thresholds, where each

indicates the belief at which the next investment takes place with certainty. Equilibria with

private information will also be affected by signalling incentives and strategic uncertainty in

this case, and we expect that many of the aspects described in this paper will carry over

to a game with more than two players. However, the welfare implications are ambiguous,

because the information-aggregation problem becomes more severe, while the social value of

experimentation increases.

We have also ruled out side payments between the players. Allowing for transferable

utility, and analyzing optimal tax or subsidy policies for early or late adopters of a potentially

risky new technology, would be further interesting questions for future research.

6 Proofs

Proof of Theorem 1. It is obvious that, prior to an accident, it can never be optimal

for either agent to switch more than once. Moreover, any delay up to the first investment

cannot be optimal. Define w(p, τ) as the planner’s value in the case in which one player

invests immediately at time 0, and the other invests with delay τ ≥ 0:

w(p, τ) = (1 + e−rτ )py + (1− p)
[
λ1 + (2λ2 − λ1)e−(r+γ)τ

]
(y − γc)

− (1 + (p+ (1− p)e−(r+γ)τ ))rI.

We show that there exist thresholds p∗1 ∈ (0, 1) and p∗2 ∈ (p∗1, 1) such that it is optimal for

exactly one player to invest immediately when p ∈ (p∗1, p
∗
2), and for both players to invest

immediately if p ≥ p∗2. Suppose first that p > p∗1. It follows from the definitions of λ1 and

λ2 that 2λ2− λ1 = λ1λ2. Therefore, the marginal value of delaying the second investment is

∂w(p, τ)

∂τ
= re−rτ [−p(y − rI) + (1− p)(λ2(γc− y) + (r + γ)I)e−γτ ]. (7)

The expression in brackets is strictly decreasing in τ . This implies that ∂w(p, τ)/∂τ < 0 for

all τ ≥ 0 whenever p > p∗2, where

p∗2 =
(r + γ)I + λ2(γc− y)

y + γI + λ2(γc− y)
, (8)
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in which case it is socially optimal to make the second investment immediately. If p ≤ p∗2,

then the socially optimal delay solves the first-order condition dw(p, τ)/dτ = 0. Thus, the

optimal delay is given by

τ s(p) =

(φ(p∗2)− φ(p))/γ if p < p∗1,

0 if p ≥ p∗1.

Define ws(p) = w(p, τ s(p)). It is easy to check that ws(p) is a strictly increasing function

with ws(0) < 0 and ws(1) > 0. Hence, ws(·) has a unique root p∗1 > 0 and ws(p) > 0 for

p > p∗1.

Proof of Lemma 1. (i) That vl is linear in p is obvious from its definition in Equation (2)

and vl is increasing in p because it follows from γc > y > 0 that the second term in

Equation (2) is negative. To see that vl is decreasing in τ , note that λ2 < λ1, and hence

d

dτ
vl(p, τ) = −(r + γ)(1− p)(λ1 − λ2)e−(r+γ)τ (γc− y) < 0

for all p ∈ (0, 1) and τ ≥ 0. That vl is convex in τ for all p ∈ (0, 1) follows from

d2

d2τ
vl(p, τ) = (r + γ)2(1− p)(λ1 − λ2)e−(r+γ)τ (γc− y) > 0.

Finally, supermodularity holds because

d2

dpdτ
vl(p, τ) = (r + γ)(λ1 − λ2)e−(r+γ)τ (γc− y) > 0.

(ii) Linearity of vf in p is obvious from its definition in (3) and it is increasing in p because

γc > y > 0 implies that the first term in Equation (3) is positive and the second term is

negative. For fixed p ∈ (0, 1), the derivative of vf with respect to τ is

d

dτ
vf (p, τ) = −e−rτ

[
rpy − (r + γ)e−γτ (1− p)λ2(cγ − y)

]
+ e−rτrI[rp+ (r + γ)(1− p)e−γτ ].

Let τ̂(p) be the (finite) solution to the first order condition dvf (p, τ)/dτ = 0. The second

term in brackets is positive, so that dvf (p, τ)/dτ > 0 if τ < τ̂(p) and dvf (p, τ)/dτ < 0 if
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τ > τ̂(p). Hence, vf attains a global maximum at τ̂(p). If τ̂(p) ≥ 0, then solving

rp(y − rI) + (r + γ)e−γτ̂
∗(p0)(1− p)(λ2(y − cγ)− rI) = 0

for τ̂(p) shows that τ̂(p) = τ ∗(p). If τ̂(p) < 0, then vf (p, ·) is strictly decreasing on [0,∞),

and therefore assumes its maximum at 0.

(iii) That p∗f > p∗2 follows by comparison of (5) and (8). The inequality p∗1 < p∗l follows

from the fact that ws(p) = vl(p, τ
s(p)) + vf (p, τ

s(p)) > vl(p, τ
s(p)) ≥ vl(p, τ

∗(p)), where the

last inequality follows from τ s(p) ≤ τ ∗(p); this holds since p∗2 < p∗f . Note that τ s(p) > τ ∗(p)

if p < p∗f . Since v∗l (p
∗
l ) = 0 and since ws(p) is an increasing function, we have p∗1 < p∗l .

Before we proceed to the proof of Theorem 2, we state and prove two lemmata. First,

note that a necessary condition for simultaneous investment to be part of an equilibrium

is that the payoff for each agent be non-negative. An agent’s payoff from jointly investing

immediately, given a posterior belief p̌t, is given by

vl(p̌t, 0) = p̌ty + (1− p̌t)λ2(y − γc)− rI. (9)

This payoff is non-negative if and only if p̌t ≥ p, where

p =
rI + λ2(γc− y)

y + λ2(γc− y)
. (10)

Clearly, there can be no initial investment in equilibrium when the prior belief p̌0 lies below

p, since then the payoff from investing is necessarily negative for each agent.

Now, define p̂∗l to be the lowest posterior belief at which the payoff of already being

invested as the leader is non-negative, i.e. v∗l (p̂
∗
l ) + rI = 0. The following lemma shows that,

for I sufficiently large, the thresholds p̂∗l , p, p
∗
f and p∗l defined above satisfy the following

chain of inequalities.

Lemma 2. There is an I0 ∈ (0, y/r) such that, for I ≥ I0, we have

p̂∗l < p < p∗l < p∗f < 1.

Proof of Lemma 2. Note that for all p < p∗f we have v∗l (p) < vl(p, 0) = vf (p, 0) < v∗f (p)

with equality everywhere when p = p∗f . By definition, we have vl(p, 0) = 0, v∗l (p
∗
l ) = 0. Since

vl, vf , v
∗
l , and v∗f are all continuously increasing functions, the first inequality v∗l (p) < vl(p, 0)

implies that p < p∗l . By definition of p∗f , we have v∗f (p
∗
f ) > 0, and thus the identity v∗l (p

∗
f ) =

24



v∗f (p
∗
f ) implies that p∗l < p∗f . Finally, when I → y/r then p → 1, while p̂∗l < 1 is bounded

away from 1. Hence, there is an I0 < y/r, such that p̂∗l < p.

The lemma implies in particular that, for I sufficiently large, joint investment can never

arise in equilibrium at any posterior belief below the threshold p∗f , because each agent cor-

rectly anticipates that the opponent would never again exit following the investment (except

after a failure). If agent 1, for example, was to invest at some posterior p̌t < p∗f , then agent 2

would prefer to wait and become the follower, knowing that agent 1 would not want to exit.

Lemma 3. In every equilibrium with public signals, each agent invests immediately at any

belief p̌ ≥ p∗f .

Proof. It is clear that for p̌ = 1, it is a unique best-response for each agent to invest imme-

diately. Because of switching costs, there also exists a threshold p†0 ∈ (p∗f , 1) close to one,

such that an agent who is invested at a belief will not exit at any p̌ ≥ p†0. At a history

with posterior belief p̌ ≥ p†0 at which exactly one agent is invested, the agent who is out

will thus invest immediately. At a history with posterior belief p̌ ≥ p†0 at which both agents

are out, they anticipate that the other agent will invest immediately following their own

investment, and thus each strictly prefers to invest immediately. Thus, in any equilibrium,

both agents are invested at any belief p̌ ≥ p†0. Because of switching costs, there exists an

ε ∈ (0, p†0 − p∗f ) such that any history with posterior belief p̌ ≥ p†1 := p†0 − ε at which exactly

one agent is invested, this agent would not exit. Again, by definition of p∗f , the agent who

is out would thus invest immediately. Again, if both agents are out, they would then invest

immediately. Thus, both agents would invest immediately at any belief p̌ ≥ p†1. The same

argument applies for any threshold above p∗f so that, in any equilibrium, both agents invest

immediately at any p̌ ≥ p∗f .

Proof of Theorem 2. (1.) Existence: (i) Let p̌t ≥ p∗f . The claim immediately follows from

the definition of p∗f .

(ii) Let p∗l ≤ p̌t < p∗f . If an agent who is invested exits, he receives the payoff v∗l (p̌t) by

construction. By the same argument as in Part (2.) below, it is never optimal for a leader

to exit when p̌t > p∗l . Before either agent has invested, we have

v∗f (p̌t) > v∗l (p̌t) > 0,

which implies that each agent strictly prefers being the follower over being the leader, and

each prefers being the leader over an outcome in which neither agent ever invests. By
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symmetry, each agent has to choose the same distribution over switching times. By standard

arguments, the equilibrium distribution cannot have any atoms or gaps in its support. Thus,

the investment rate β∗(p̌t) from Equation (6) characterizes the distribution that makes each

agent indifferent between investing and not investing, which establishes the claim.

(iii) For p̌t ≤ p∗l , the claim follows immediately from the definition of p∗l .

(2.) Uniqueness : Consider a history with posterior belief p̌t ∈ [p̂∗l , p
∗
f ), at which exactly one

agent, say agent 1, is invested. By Lemma 3, in any equilibrium, agent 2 invests immediately

at any s ≥ t at which p̌s ≥ p∗f . Thus, if agent 1 stays invested indefinitely, (or until an accident

occurs,) the largest delay compatible with equilibrium is τ ∗(p̌t). The payoff for agent 1 is

therefore no less than v∗l (p̌s) + rI at each s ≥ t. Let (Ik)k∈N0 be an increasing sequence

in [0, y/r] with I0 = 0 and Ik → y/r for k → ∞, and let (p̌k0) be a sequence of beliefs in

(p∗kl , p
∗k
f ), where p∗kl and p∗kf are the leader and follower thresholds for investment cost Ik for

each k. Further, let pk be given by (10) with I = Ik. Since pk → 1 for k → ∞, we have

p∗kl → 1 for k → ∞. Thus, the payoff for the leader is at least v∗l (p̌
k
0) + rIk → y. On the

other hand, the best thing that can happen for agent 1 after exiting is that the other agent

invests and never exits. Thus, the highest payoff agent 1 can achieve after an exit is v∗f (p̌
k
0)

which converges to zero as Ik → y/r. Together it follows that

lim
k→∞

v∗l (p̌
k
0) + rIk − v∗f (p̌k0) = y (11)

which implies that there exists a k†, such that for all k > k†, we have

v∗l (p̌
k
0) + rIk > v∗f (p̌

k
0).

This inequality implies that a leader cannot gain by exiting at beliefs in the range [p̂∗l , p
∗
f ) if

I > I†, for some I† > 0. From (11), it follows that I† < y/r. Given that the leader does not

exit, there cannot be any p̌t ∈ [p̂∗l , p
∗
f ) at which both agents invest immediately since either

agent would prefer delaying the investment and become a follower. Since there is no equi-

librium with simultaneous investment, in symmetric equilibrium, both agents must choose

the same distribution over initial investment times. Because the continuation strategies are

unique, there is a unique investment rate, given by (23), that has the property that each

agent is willing to randomize. Thus, there is a unique symmetric equilibrium outcome. By

Lemma 2, we have p̂∗l < p, for I sufficiently large. In this case, agents’ expected payoffs from

investing are thus negative for p̌t ≤ p̂∗l . Therefore, in every equilibrium, both agents refrain

from investing/ rescind their respective investment for good in this range.
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Proof of Theorem 3. Part (1.): Suppose p0 > 0 and ρ > 1/2 such that p0(g, g) ≥ p∗f .

We proceed to verify that the following strategies and beliefs are part of an equilibrium. In

the first phase, an agent with signal g invests immediately. An agent with signal b invests

immediately with probability η ∈ [0, 1]. With probability 1− η, he invests at a random time

drawn from an exponential distribution with parameter β∗(p0(b, b)). In the second phase

of the game, a follower with posterior belief p delays investment by τ ∗(p), and the beliefs

at t are updated via Bayes’ rule whenever possible. A leader with signal g reverses his

investment immediately at t = 0 (and stays out) if and only if his posterior belief about θ

is lower than p̂∗l . Otherwise he stays invested indefinitely. A leader with signal b reverses

his investment immediately at t = 0 with some probability 1− ν ∈ [0, 1]. Either agent who

remains invested in the second (or third) phase exits after the occurrence of a failure. Unless

otherwise stated, beliefs after off-path histories are specified as follows: In any phase, at

time t, the non-deviating agent with signal s assigns probability pt(b, s) to state θ = H. By

the same token, after any off-path exit of agent i, agent −i assigns probability 1 to agent i’s

signal being b. Any off-equilibrium investment of agent i does not affect agent −i belief about

agent i’s signal. The deviating agent’s beliefs do not change as a result of his deviation.

We show that there exist η, ν ∈ (0, 1) such that the above strategies and associated beliefs

characterize a perfect Bayesian equilibrium. Consider first the second phase, taking as given

that each type g invests at t = 0 with probability 1, and each type b invests at t = 0 with

probability η and waits with probability 1 − η. As shown in Lemma 1, the function τ ∗(p)

is the optimal delay of the follower with posterior p, and thus given the leader stays in the

game, a follower cannot gain from deviating in the second phase of the game. If the leader

exits immediately in the second phase, the follower cannot influence that decision.

Suppose agent i with signal s invests at time t = 0 in the first phase, and the other agent

−i does not, so that at t = 0 in the second phase, agent i is the leader and −i the follower.

If both expect that the other agent follows the strategy described in the previous paragraph,

then the posterior belief of agent i with signal s is p0(b, s), and the posterior belief of type

s of agent −i is, by Bayes’ rule,

p̃(η,s)=
p0(s)(ρ+η(1−ρ))

p0(s)(ρ+η(1−ρ))+(1−p0(s))(1−(1−η)ρ)
. (12)

If vl(p0(b, b), τ ∗(p̃(η, b)))+rI > v∗l (p0(b, b))+rI > 0, then the continuation payoffs for either

type of agent i is positive (since vl(p0, τ
∗(p̃(ην, b))) > vl(p0(b, b), τ ∗(p̃(ην, b)))), and both

types of agent i remain invested for sure. If, on the other hand, vl(p0(b, b), τ ∗(p̃(η, b)))+rI <
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0 < vl(p0(b, b), τ ∗(p0)) + rI, then type b of agent i remains in the game with probability

ν∗ ∈ (0, 1) solving vl(p0(b, b), τ ∗(p̃(ην∗, b))) + rI = 0.10 If vl(p0(b, b), τ ∗(p0)) + rI < 0, then

type b of agent i exits for sure, and type g remains for sure.

We need to show that there exists a value for η such that neither agent can gain by

deviating from the specified strategies in the first phase. Denote by Vθ(η) the value of

investing at t = 0 for an agent in state θ, and let Wθ(η, τ) be the value of waiting at t = 0

when the agent delays investment by τ as follower. Note that here τ refers to the delay of

the investment, given that the other agent invests immediately at t = 0. When neither agent

invests, then each agent is convinced that the other agent’s type is bad, so that there is

no longer any uncertainty about the other’s private information, and the unique symmetric

equilibrium under public information with p̌0 = p0(b, b) is played after that history. Note

here that when the state and strategies are given, the payoff is independent of private signals.

Note also that for a follower in the second phase, the optimal delay for type b is τ ∗(p̃(η, b))

when type b of the other agent invests with probability η. We write

E[W ∗
θ (η)|s] := max

τ
E[Wθ(η, τ)|s] = E[Wθ(η, τ

∗(p̃(η, s))|s].

for the payoff from waiting when using the optimal delay.

There is a pooling equilibrium, i.e. η = 1, if and only if p0(b) ≥ p∗f , since, in this case, each

type of each agent is willing to invest immediately, if the other agent invests for sure, and

thus reveals no information. Thus, consider the case p0(b) < p∗f . Note that in this case, we

have E[W ∗
θ (1)|b] ≥ E[Vθ(1)|b], since bad types always have incentives to wait when the other

agent invests with probability one. There are two cases to consider, E[W ∗
θ (0)|b] < E[Vθ(0)|b]

and E[W ∗
θ (0)|b] ≥ E[Vθ(0)|b].

(i.) Suppose E[W ∗
θ (0)|b] < E[Vθ(0)|b], i.e., an agent with a bad signal prefers to invest

immediately in the first phase at time zero, if the other agent invests with zero proba-

bility after a bad signal and invests immediately after a good signal. In this case, there

exists a partial (or full) pooling equilibrium in which type g always invests while type b

invests with probability η∗ ∈ (0, 1]. Note that the functions E[W ∗
θ (η)|b] and E[Vθ(η)|b]

are convex combinations of continuous functions and hence continuous. Thus, there

exists an η∗ ∈ (0, 1] such that E[Vθ(η
∗)−W ∗

θ (η∗)|b] = 0, so that an agent with type b

is indifferent between investing and not investing, given the other agent invests with

10Note that p̃(ην∗, b) is the posterior belief of type b of agent −i that the state is H, conditional on the joint
event that agent i invested in the first phase and remains in the second phase, where ην∗ is the probability
that type b of agent i does this.
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probability η∗ after observing signal b. We shall now verify an agent of type g’s incen-

tives to invest. Note that we have the following inequality:

0 = E[Vθ(η
∗)−W ∗

θ (η∗)|b] ≤ E[Vθ(η
∗)−Wθ(η

∗, τ ∗(p̃(η∗, g)))|b]

= p0(b)
(
VH(η∗)−WH(η∗, τ ∗(p̃(η∗, g))

)
+ (1− p0(b))

(
VL(η∗)−WL(η∗, τ ∗(p̃(η∗, g)))

)
≤ p0(g)

(
VH(η∗)−WH(η∗, τ ∗(p̃(η∗, g))

)
+ (1− p0(g))

(
VL(η∗)−WL(η∗, τ ∗(p̃(η∗, g)))

)
= E[Vθ(η

∗)−W ∗
θ (η∗)|g],

where the first inequality follows from the fact that E[W ∗
θ (η∗)|b] ≥ E[Wθ(η

∗, τ)|b] for

all τ ≥ 0 by definition, and the second inequality from p0(g) > p0(b), and from the

fact that investing immediately is strictly better than waiting if and only if the state

is H (since there is no gain from delay in state H, and no gain from investing in state

L).

(ii.) Now, suppose E[W ∗
θ (0)|b] ≥ E[Vθ(0)|b], so that agents with signal b prefer to wait if

the other agent invests only if his signal is g. For agents with signal g in this case we

have

E[Vθ(0)−Wθ(0)|g] = q0(g)
(
vl(p0(g, g), 0)− v∗f (p0(g, g))

)
+ (1− q0(g))

(
0 ∨ v∗l (p0)− 0 ∨ vl(p0, τ

∗(p0(b, b))
)
.

Since p0(g, g) ≥ p∗f by assumption, we have vl(p0(g, g), 0)− v∗f (p0(g, g)) = 0, and thus

E[Vθ(0) −Wθ(0)|g] ≥ 0. Thus, in this case, we have a fully separating equilibrium in

which g-types invest at t = 0, whereas b-types do not.

It remains to be shown that, in both cases (i.) and (ii.), if agent i has incentives to invest

at time t = 0, then he has no incentive subsequently to exit, provided I is large enough.

Similarly to the proof of Theorem 2, let (Ik)k∈N0 be an increasing sequence in [0, y/r] with

I0 = 0 and Ik → y/r for k → ∞, and let (pk0, ρ
k) be a sequence of information struc-

tures with p∗kl < pk0 < p∗kf < pk0(g, g), where p∗kl and p∗kf are, respectively, the leader and

follower thresholds for investment costs Ik, such that either E[W ∗k
θ (0)|b] < E[V k

θ (η)|b] or

E[W ∗k
θ (0)|b] ≥ E[V k

θ (η)|b] for all k ≥ 0, where W ∗k
θ (η), V k

θ (η) denote the follower and leader

value for each k (as above). Moreover, let p̃k(η, b) be the posterior belief given by (12) at step

k, and let ηk ∈ [0, 1] be the critical value with the property that (1) for p0(b) < p∗kf , either

type b of each agent is indifferent or else ηk = 0, and (2) for p0(b) ≥ p∗kf , we have ηk = 1.
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Finally, let pk be given by (10) with I = Ik. Note that, if si = b, our assumption that i has

incentives to invest at time t = 0 implies p̃k(ηk, b) ≥ pk for all k. If si = g, our assumption

in the statement of the theorem implies that i’s belief after any history is bounded below by

p0 ≥ p∗kl ≥ pk.

(i.) Both agents invested. Note that p̃k(ηk, b)→ 1 as pk → 1, for k →∞. Thus, the payoff

of remaining invested, for either type of agent, is at least v∗l (p̃
k(ηk, b), 0) + rIk → y.

On the other hand, the best thing that could happen to an agent after exiting would

be for the other agent to reveal his type, to invest and never to exit. Thus, the highest

payoff either type of agent i could possibly achieve after an exit is E[v∗f (p
k
0(s−i, g))]

which converges to zero as Ik → y/r. Together it follows that

lim
k→∞

v∗l (p̃
k(ηk, b), 0) + rIk − E[v∗f (p

k
0(s−i, g)] = y (13)

which implies that there exists a k̃1, such that for all k > k̃1, we have

v∗l (p̃
k(ηk, b), 0) + rIk > E[v∗f (p

k
0(s−i, g)].

This inequality implies that there exists a threshold Ĩ1 such that a leader of either

type cannot gain by exiting if I > Ĩ1. From (13), it follows that Ĩ1 < y/r.

(ii.) Only one agent invested. First, we argue that type b of each agent i remains invested

if he invests himself and his payoff as leader is positive, i.e., if pk0(b, b) > p̂∗kl . If

pk0(b, b) ∈ [p̂∗kl , p
∗k
l ), then exit is clearly not optimal, since after i’s exit, agent −i

(whose type has become known to be b after he did not invest) will never invest going

forward. Thus assume pk0(b, b) ≥ p∗kl . Then v∗l (p
k
0(b, b)) + rIk ≥ v∗l (p

∗k
l ) + rIk. Since

pk → 1 for k → ∞, it follows from pk0(b, b) ≥ pk that pk0(b, b) → 1 for k → ∞, and

therefore, v∗l (p
k
0(b, b))+rIk → y. On the other hand, the best thing that could happen

for agent i after exiting is that the other agent invests and never exits. Thus, the

highest payoff agent i can achieve after an exit is at most v∗f (p
k
t (b, b)) which converges

to zero as Ik → y/r. Together it follows that

lim
k→∞

v∗l (p
k
t (b, b)) + rIk − v∗f (p̃k(ηk, b)) = y (14)
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which implies that there exists a k̃0, such that for all k > k̃0, we have

v∗l (p
k
0(b, b)) + rIk > v∗f (p̃

k(ηk, b)).

This inequality implies that there exists a threshold Ĩ0 such that a leader cannot gain

by exiting if I > Ĩ0. From (14), it follows that Ĩ0 < y/r.

Part (2.): Consider symmetric strategies with the following properties. Each agent with

signal g invests with probability ν, and each agent with signal b waits indefinitely in the first

phase. If p0 ≥ p̂∗l , an agent who invested at t = 0 always remains invested until an accident

occurs; if p0 < p̂∗l , an agent i who invested at t = 0 in the first phase rescinds his investment

at t = 0 in the third phase

if and only if −i did not invest in the second phase at t = 0. If agent i invests immediately,

then agent −i invests without delay if his signal is g. If agent −i’s signal is b, then he delays

his investment by τ ∗(p0). Agents never invests after any other history. Each agent with

signal g is indifferent between investing and delaying his investment if

q0(g)vl(p0(g, g), 0) + (1− q0(g))(max{v∗l (p0) + rI, 0} − rI) = νq0(g)vf (p0(g, g), 0).

which is equivalent to

ν∗ = 1 +

(
1− q0(g)

q0(g)

)(
max{v∗l (p0) + rI, 0} − rI

vf (p0(g, g), 0)

)
(15)

When agent i with signal g invests, his continuation strategy is optimal by construction. To

show that it is optimal for agents with signal b to wait, denote by Vθ(ν) the value of investing

at t = 0 for an agent in state θ, and let Wθ(ν, τ) be the value of waiting at t = 0 when the

agent delays investment by τ as follower. Let further W ∗
θ (ν) denote the value of waiting with

optimal delay of the follower. By construction of ν∗ and τ ∗, we have

0 = E[Vθ(ν
∗)−W ∗

θ (ν∗)|g]

= p0(g)
(
VH(ν∗)−WH(ν∗, τ ∗(p0(g, g)))

)
+ (1− p0(g))

(
VL(ν∗)−WL(ν∗, τ ∗(p0(g, g)))

)
≥ p0(b)

(
VH(ν∗)−WH(ν∗, τ ∗(p0(g, g)))

)
+ (1− p0(b))

(
VL(ν∗)−WL(ν∗, τ ∗(p0(g, g)))

)
= E[Vθ(ν

∗)−Wθ(ν
∗, τ ∗(p0(g, g)))|b]

≥ E[Vθ(ν
∗)−W ∗

θ (ν∗)|b].
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Thus, for an agent with signal b, it is a best response to wait. A similar argument to before

establishes that it is never optimal for an agent who invested to exit.

Part (3.): Suppose p0 > 0 and ρ ∈ (0.5, 1) are such that p0(g, g) < p∗f . The strategies

outlined in the theorem imply that an agent who invests in the first phase and becomes the

leader reveals himself to be of type g. Suppose that after agent i invests at time t in the first

phase, the agents use the following continuation strategy:

• Agent −i with signal g invests at time t+ ∆, where ∆ = τ ∗(p0(g, g)).

• If v∗l (pt+∆) + rI ≥ 0, where

pt+∆ =
p0

p0 + (1− p0)e−γ∆
,

then type g of agent i remains in the game indefinitely, and each type s of agent −i
invests with delay τ ∗(p0(s, g))

• If v∗l (pt+∆) + rI < 0 < vl(pt+∆, 0), then type g of agent i remains for sure until t + ∆

and type g of the follower enters after delay ∆. Beginning at time t + ∆, type b of

agent −i invests at rate φf (s) solving

0 = y − (1− ps)γc+ φf (s)(vl(ps, 0) + rI)

and type g of agent i exits at rate φl(s) solving

vl(ps, 0) = (1− rdt− (1− p)γdt− φl(s)dt)vl(ps+dt, 0).

The exit and investment rates φl, φf are defined in a way that the leader and follower

are willing to randomize. Note that since delay is profitable for the follower for all

p < p∗f , we have

vl(ps, 0) < (1− rdt− γdt)vl(ps+dt, 0).

and thus φl > 0.

• If vl(pt+∆, 0) + rI, vl(pt+∆, 0) < 0, then type g of agent i remains in until t+ ∆ if agent

−i invests with delay ∆, and agent i exits otherwise. Type g of agent −i invests with

delay ∆, and type b of agent −i never invests.

If agent i with signal g, who invested at some time t < t∗, deviates by exiting, we assume that

agent −i delays investment indefinitely while both agents are out, yet ignores the deviation
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completely as soon as agent i re-enters, making it a best response for the deviating agent to

re-invest immediately upon exiting (since it was optimal for him to enter in the first place).

Given agent i re-invests immediately, it is a best response for agent −i to stay out.11

(i) Derivation of the equilibrium investment rate of agents with signal g. Henceforth, for

each of the three cases above, denote by Vθ(si, s−i) the value of agent i conditional on (1)

state θ and (2) agent i with signal si being the leader, and agent −i with signal s−i using the

assigned follower strategy. Similarly, let Wθ(si, s−i) be the value of becoming the follower.

As we have noted in the main text, these payoffs are independent of time in the first phase,

since the signal pair (si, s−i) encapsulates all information that is exchanged in the first phase,

so that pt(si, s−i) = p0(si, s−i). Thus, each agent’s expected value of becoming the leader is

given by

U(qt(g)) = qt(g)E[Vθ(g, g)|si = g, s−i = g] + (1− qt(g))E[Vθ(g, b))|si = g, s−i = b].

Type g of each agent is willing to randomize if he is indifferent between investing immediately

and waiting for another instant. Hence, the value function for type g of the agent must satisfy

the indifference condition

U(qt(g)) = µtqt(g)E[Wθ(g, g)|si = g, s−i = g]dt+ (1− rdt− µtqt(g)dt)U(qt+dt(g)). (16)

By Ito’s Lemma, the indifference condition (16) can be written as

U(qt+dt(g)) = U(qt(g)) + dU(qt(g))dqt(g), (17)

where by definition of U , we have dU(qt(g))/dqt(g) = E[Vθ(g, g)] − E[Vθ(g, b)]. Bayes’ rule

implies that the posterior belief at t+ dt is

qt+dt(g) =
qt(g)(1− µtdt)
1− qt(g)µtdt

.

The differential change in belief is therefore

dqt(g)

dt
≡ lim

dt→0

qt+dt(g)− qt(g)

dt
= −µtqt(g)(1− qt(g)). (18)

If we now substitute equations (17) and (18) in the indifference condition (16) and ignore

11Note that, since the follower and the leader have divergent beliefs at a history with a single investment,
our definition of symmetry imposes no restrictions after such histories.
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higher order terms, we obtain the expression

rU(qt(g)) = µtqt(g)E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]. (19)

Since p0(g, g) < p∗f , the right-hand side of this equation is strictly positive. Simplifying and

solving the equation for µt yields

µt =
rU(qt(g))

qt(g)E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]
. (20)

Here, µt is the rate of investment for type g of each agent in the symmetric equilibrium at

a given belief qt(g). Note that since p0(g, g) < p∗f , we have Wθ(g, g) > Vθ(g, g), and thus

µt ∈ [0,∞). (If p0(g, g) ≥ p∗f , then Wθ(g, g) ≤ Vθ(g, g), and an equilibrium of the type

constructed here does not exist.) Substituting this last expression into Equation (18), we

obtain the evolution of the posterior qt(g) in equilibrium:

dqt(g) = −(1− qt(g))
rU(qt(g))

E[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]
dt. (21)

We obtain the equilibrium belief and equilibrium investment rate at each time t by solving

Equation (21) with given initial belief q0. The initial value problem (21) has the unique

solution

qt(g) =
e−tβ

∗(p0(g,g))U(q0(g)) + (1− q0(g))E[Vθ(g, b)]

e−tβ∗(p0(g,g))U(q0(g))− (1− q0(g))E [Vθ(g, g)− Vθ(g, b)|si = g]
. (22)

We now substitute qt(g) into Equation (20) and simplify to obtain the equilibrium rate of

investment

µ∗t =
e−tβ

∗(p0(g,g))U(q0(g))

e−tβ∗(p0(g,g))U(q0(g)) + (1− q0)E[Vθ(g, b)|si = g]
β∗(p0(g, g)). (23)

If rE[Vθ(g, b)] > 0 then the investment rate µ∗t diverges to +∞ as t→ t∗, where

t∗ = log

(
1 +

p0(g, g)

p0

E[Vθ(g, g)]

E[Vθ(g, b)]

)β∗(p0(g,g))

. (24)

If, on the other hand, E[Vθ(g, b)] < 0, then µ∗t converges to 0 as t→∞. Thus, t∗ =∞.

(ii) Agents with signal b prefer to wait until t∗. For agents with signal b, the incremental

opportunity cost from waiting is rE[Vθ(b, s)|si = b]dt. The expected incremental gain from
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waiting for this type is µ∗t qt(b)E[Wθ(b, g)−Vθ(b, g)|si = b]dt. We show that when agents with

signal g invest at rate µ∗t , then agents with signal b prefer to wait:

rE[Vθ(b, s)|si = b] ≤ µ∗t qt(b)E[Wθ(b, g)− Vθ(b, g)|si = b, s−i = g]. (25)

Because flow values are positive in state H and negative in state L, i.e., y ≥ 0 ≥ y − γc, we

have VH(si, s−i) ≥ 0 ≥ VL(si, s−i). Therefore:

Et[Vθ(si, s−i)|si = b] = pt(b)Et[VH(si, s−i)|si = b] + (1− pt(b))Et[VL(si, s−i)|si = b]

≤ pt(g)Et[VH(si, s−i)|si = b] + (1− pt(g))Et[VL(si, s−i)|si = b]

≤ pt(g)Et[VH(b, s−i)|si = g] + (1− pt(g))Et[VL(b, s−i)|si = g]

≤ pt(g)Et[VH(g, s−i)|si = g] + (1− pt(g))Et[VL(g, s−i)|si = g]

= Et[Vθ(si, s−i)|si = g].

The first inequality follows because pt(g) > pt(b). Note that according to our prescribed

strategies, agents with signal g invest earlier than agents with signal b, and exit later. There-

fore, we have Vθ(si, g) ≥ Vθ(si, b). Since qt(g) > qt(b), we thus have Et[Vθ(b, s−i)|si = g] ≥
Et[Vθ(b, s−i)|si = b] for each θ, which explains the second inequality. The last inequality

follows because the strategy of type g is constructed to maximize the continuation payoff

after investing. Note that

1

qt(si)
E[Vθ(si, s−i)|si] =

pt(si)

qt(si)
E[VH(si, s−i)|si] +

1− pt(si)
qt(si)

E[VL(si, s−i)|si]

Because ρ > 1/2 and pt(g) > pt(b), it follows that

pt(b)

qt(b)
=

pt(b)

ρpt(b) + (1− ρ)(1− pt(b))
<

pt(g)

ρpt(g) + (1− ρ)(1− pt(g))
=
pt(g)

qt(g)

and similarly,
1− pt(b)
qt(b)

>
1− pt(g)

qt(g)
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Combining the previous results, we find that

1

qt(b)
E[Vθ(si,s−i)|si=b]=

pt(b)

qt(b)
E[VH(si,s−i)|si=b]+

1−pt(b)
qt(b)

E[VL(si,s−i)|si=b]

≤pt(g)

qt(g)
E[VH(si,s−i)|si=b]+

1−pt(g)

qt(g)
E[VL(si,s−i)|si=b]

≤pt(g)

qt(g)
E[VH(si,s−i)|si=g]+

1−pt(g)

qt(g)
E[VL(si,s−i)|si=g]

=
1

qt(g)
E[Vθ(si,s−i)|si=g]

The previous inequalities, together with (19), imply

1

qt(b)
rE[Vθ(si, s−i)|si = b] ≤ 1

qt(g)
rE[Vθ(si, s−i)|si = g] (26)

= µ∗tE[Wθ(g, g)− Vθ(g, g)|si = g, s−i = g]. (27)

(iii) No exit before failure. If neither agent has invested at time t > t∗, then it is common

knowledge that both agents have observed bad signals, and thus there is a unique symmetric

continuation equilibrium in this case. Suppose agent i invests at t < t∗ and subsequently

deviates by exiting. As before, we assume that, after such a history, the non-deviating agent

stays out forever while both agents are out, and ignores the deviation as soon as the deviator

re-enters, making it a best response for the deviating agent immediately to re-invest. This

in turn makes it a best response for the first agent to stay out.

Proof of Theorem 4. Let P be the distribution over signals for given parameters p0 and

ρ. We write P (si) for the probability that a given agent’s signal is si and P (s1, s2) for the

probability that the pair of signals is (s1, s2).

(1.) Suppose p0 > p∗f . Then, choose ρ∗ > 1/2 such that p0(b) > p∗f and p0(b, b) > p∗2. As we

show in the proof of Theorem 3, it follows that for all ρ < ρ∗, there exists a pooling

equilibrium in which each type of each agent invests immediately. By Theorem 1, this

equilibrium is efficient. Hence W̃ ≥ E[Wθ(s1, s2)].

(2.) Let p∗f > p0 > p∗l . Choose ρ∗ > 1/2 such that p∗f > p0(g, g) and p0(b, b) ≥ p∗l . By

Theorem 3, there exists an equilibrium with delayed entry. It follows from arguments

in the proof of Theorem 3 that the expected equilibrium value of the good type of each

agent is E[Vθ(g, s−i)] ≥ E[v∗l |g]. The inequality follows from the fact that leaders have
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the option to exit. By Equation (25), bad types strictly prefer to delay investment

at each t < t∗. The expected payoff for an agent of type b who deviates by investing

before time t∗ is bounded below by

qt(b)vl(p0, τ
∗(p0(g, g))) + (1− qt(b))v∗l (p0(b, b), τ ∗(p0)) > E[v∗l |b].

Therefore, the expected social surplus for each agent is

W̃ > P (g)E[v∗l |g] + P (b)E[v∗l |b] = E[Wθ(s
1, s2)].

(3.) Let p0 = p∗f . Since p0(g, g) > p∗f , each agent with signal g invests immediately. We

show that there exists ρ∗ > 1/2 such that W̃ > E[Wθ(s1, s2)] for all ρ ∈ (1/2, ρ∗).

The equilibrium is with immediate investment, since p0(g, g) > p∗f . There cannot be a

pooling eqilibrium, since p0(b) < p0 = p∗f .

The social welfare per agent therefore satisfies the inequality

W̃≥P (g)
[
q0(g)vl(p0(g,g),0)+(1−q0(g))(ηvl(p0,0)+(1−η)vl(p0,τ

∗(p̃η(b))))
]

+P (b)
[
q0(b)vl(p0,0)+(1−q0(b))(ηvl(p0(b,b),0)+(1−η)vl(p0(b,b),τ ∗(pη(b))))

]
.

The right-hand side represents the ex-ante expected payoff for an agent who invests

immediately after each signal, which is a lower bound for the equilibrium payoff. Note

that P (g)q0(g) = P (g, g), P (g)(1− q0(g)) = P (b)q0(b) = P (b, g) and P (b)(1− q0(b)) =

P (b, b). Using q0(b)p0 +(1−q0(b))p0(b, b) = p0(b) together with the linearity of vl(p, 0),

we can write

W̃ ≥ P (g, g)vl(p0(g, g), 0) + P (b, g)vl(p0, 0)

+ (P (g, b) + P (b, b))
[
ηvl(p0(b), 0) + (1− η)vl(p0(b), τ ∗(p̃(η, b))

]
.

When signals are public, then, after each realized pair of signals resulting in the pos-

terior belief p̌0, each agent’s equilibrium payoff is v∗l (p̌0) (when ρ∗ is chosen so that

p0(b, b) > p∗l for all ρ ∈ (1/2, ρ∗). Thus, the expected welfare under public information
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can be written as

E[Wθ(s1,s2)]=P (g,g)v∗l (p0(g,g))+P (b,g)v∗l (p0)

+(P (g,b)+P (b,b))
[
q0(b)v∗l (p0)+(1−q0(b))v∗l (p0(b,b))

]
. (28)

Using the definition of τ ∗ in Lemma 1, we have

v∗l (p) = vl(p, τ
∗(p)) = py + (1− p)λ1(y − γc)

+ (1− p)e−(r+γ)τ∗(p)(λ2 − λ1)(y − γc)− rI.

Since p0 = p∗f , we have τ ∗(p0) = τ ∗(p0(g, g)) = 0. We have that W̃ > E[Wθ(s1, s2)] if

ηvl(p0(b), 0)+(1−η)vl(p0(b), τ ∗(p̃(η, b))

> q0(b)vl(p0, 0)+(1−q0(b))v∗l (p0(b, b))). (29)

We define ψ(p) := p
1−p = eφ(p) and α := r+γ

γ
> 1. Then, the left-hand side of Inequality

(29) can be written as

ηvl(p0(b), 0) + (1− η)vl(p0(b), τ ∗(p̃(η, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+ (1− p0(b))

[
η + (1− η)ψ(p̃(η, b))αψ(p∗f )

−α

]
(λ2 − λ1)(y − γc)− rI (30)

From Bayes’ rule and the definition of ψ, we have

ψ(p0(b))=
p0

1−p0

1−ρ
ρ

=ψ(p0)/ψ(ρ), ψ(p̃(η,b))=ψ(p0(b))

(
ρ+(1−ρ)η

1−ρ+ρη

)
.

If we now use the previous equalities to factor out ψ(p0(b))αψ(p∗f )
−α from the square

brackets in (30), we obtain

ηvl(p0(b),0)+(1−η)vl(p0(b),τ ∗(p̃(η,b))=p0(b)y+(1−p0(b))λ1(y−γc)

+(1−p0(b))ψ(p0(b))αψ(p∗f )
−α

[
ηψ(ρ)α+(1−η)

(
ρ+(1−ρ)η

1−ρ+ρη

)α]
(λ2−λ1)(y−γc)−rI.

(31)
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The right-hand side of Inequality (29) is given by

q0(b)vl(p0, 0)+(1− q0(b))v∗l (p0(b, b)) = p0(b)y + (1− p0(b))λ1(y − γc)

+

[
q0(b)(1− p0) + (1− q0(b))(1− p0(b, b))ψ(p0(b, b))αψ(p∗f )

−α

]
(λ2−λ1)(y− γc)− rI.

(32)

From Bayes’ rule it follows that

q0(b)

1−p0(b)
=
p0(b)ρ+(1−p0(b))(1−ρ)

1−p0(b)
=

(
p0

1−p0

1−ρ
ρ

)
ρ+(1−ρ)=

1−ρ
1−p0

,

1−q0(b)

1−p0(b)
=
p0(b)(1−ρ)+(1−p0(b))ρ

1−p0(b)
=

(
p0

1−p0

1−ρ
ρ

)
(1−ρ)+ρ=

ρ

1−p0(b,b)
.

Using these equalities together with the identity

ψ(p0(b, b)) =
p0(b)

1− p0(b)

1− ρ
ρ

= ψ(p0(b))ψ(1− ρ)

to factor out (1− p0(b))ψ(p0(b))αψ(p∗f )
−α from the square brackets in (32), we obtain

q0(b)vl(p0,0)+(1−q0(b))v∗l (p0(b,b))=p0(b)y+(1−p0(b))λ1(y−γc)

+(1−p0(b))ψ(p0(b))αψ(p∗f )
−α

[
(1−ρ)ψ(ρ)α+ρψ(ρ)−α

]
(λ2−λ1)(y−γc)−rI.

Define the functions,

h(η, ρ) := ηψ(ρ)α + (1− η)

(
ρ+ (1− ρ)η

1− ρ+ ρη

)α
, g(ρ) := (1− ρ)ψ(ρ)α + ρψ(ρ)−α.

Condition (29) is thus equivalent to infη h(η, ρ) > g(ρ). One calculates that the partial

derivative of h at ρ = 1/2 is limρ→1/2 ∂ρh(η, ρ) = 4α (2η2 − η + 1) /(η + 1). The

function limρ→1/2 ∂ρh(η, ρ) has its minimum in η at
√

2 − 1 and is thus larger than

4
(
4
√

2− 5
)
> 0. On the other hand, g′(1/2) = 0. Thus, there exists a ρ∗ > 1/2 such

that for all ρ ∈ (1/2, ρ∗), we have W̃ > E[Wθ(s1, s2)].

39



References

Abbasi, A. and A. Jaafari (2013). Research impact and scholars’ geographical diversity.

Journal of Informetrics 7 (3), 683–692.

Aidt, T. S. and P. S. Jensen (2009). The taxman tools up: An event history study of the

introduction of the personal income tax. J. Public Econ. 93 (1-2), 160–175.

Anderson, L. R. and C. A. Holt (1997). Information cascades in the laboratory. The American

economic review 87 (5), 847–862.

Banerjee, A. V. (1992). A simple model of herd behavior. Q. J. Econ. 107 (3), 797–817.

Barjak, F. and S. Robinson (2008). International collaboration, mobility and team diversity

in the life sciences: impact on research performance. Social geography 3 (1), 23–36.

Beaman, L. and J. Magruder (2012). Who gets the job referral? evidence from a social

networks experiment. American Economic Review 102 (7), 3574–93.

Becker, M. H. (1970). Factors affecting diffusion of innovations among health professionals.

American Journal of Public Health and the Nations Health 60 (2), 294–304.

Bikhchandani, S., D. Hirshleifer, and I. Welch (1992a). A theory of fads, fashion, custom, and

cultural change as informational cascades. Journal of political Economy 100 (5), 992–1026.

Bikhchandani, S., D. Hirshleifer, and I. Welch (1992b). A theory of fads, fashion, custom,

and cultural change as informational cascades. J. Polit. Econ. 100 (5), 992–1026.

Bobonis, G. J. and F. Finan (2009). Neighborhood peer effects in secondary school enrollment

decisions. The Review of Economics and Statistics 91 (4), 695–716.

Bobtcheff, C. and R. Levy (2017). More haste, less speed? signaling through investment

timing. American Economic Journal: Microeconomics 9 (3), 148–86.
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