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Abstract

We examine a two-player game with two-armed exponential bandits à la [Keller, Rady, Cripps (2005)],

where players operate different technologies for exploring the risky option. We characterise the

set of Markov perfect equilibria, and show that there always exists an equilibrium in which the

player with the inferior technology uses a cutoff strategy. All Markov perfect equilibria imply

the same amount of experimentation but differ with respect to the expected speed of the resolu-

tion of uncertainty. If and only if the degree of asymmetry between the players is high enough,

there exists a Markov perfect equilibrium in which both players use cutoff strategies. Whenever

this equilibrium exists, it welfare dominates all other equilibria. This contrasts with the case of

symmetric players, where there never exists a Markov perfect equilibrium in cutoff strategies.

JEL Classification Numbers: C73, D83, O31 Keywords:Two-armed Bandit; Heterogeneous
Agents; Free-Riding Learning

1 Introduction

In many instances, the information produced by one agent is interesting to other agents as well. Think
e.g. of firms exploring neighbouring oil patches: If one firm strikes oil, chances are there will be oil
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in its neighbour’s patch as well. Such games of purely informational externalities have been analysed
by the strategic bandit literature,1 which so far has only analysed the case of homogeneous agents.
However, in many instances, one of the oil firms, for example, might be a big multinational firm
that has access to a superior drilling technology. In this article, we aim to analyse the impact of
asymmetries in players’ exploration technologies in a game of strategic experimentation with two-
armed exponential bandits.

The seminal paper by [Keller, Rady, Cripps (2005)] analyses this problem with homogeneous
players. In the current paper, we generalise the analysis by introducing asymmetric players, in the
sense that their payoff arrival rates from a good risky arm differ. This implies that, given the risky arm
is good, the expected time needed to learn this differs between the players. As actions and outcomes
are perfectly publicly observable, and players start out with a common prior, they will always have
a common posterior belief. We characterise the set of Markov perfect equilibria with the players’
common posterior belief as the state variable for all ranges of asymmetry between the players. If the
degree of asymmetry between the players is sufficiently high, there exists an equilibrium in cutoff

strategies, i.e. where both players use a cutoff strategy. That is, either player uses the risky arm if
and only if the likelihood he attributes to the option being good is greater than a certain threshold.
This equilibrium is unique in the class of equilibria in cutoff strategies. Whenever only one of the
players experiments and the other free rides in this equilibrium, it is always the player with the weaker
technology who free rides. In the case of homogeneous players ([Keller, Rady, Cripps (2005)]), by
contrast, there never exists an equilibrium in cutoff strategies, and players swap the roles of pioneer
and free-rider at least once in any equilibrium. In our setting, aggregate payoffs in the equilibrium
in cutoff strategies are higher than in any other equilibrium. If the degree of asymmetry is low, at
least one player uses a non-cutoff strategy in any equilibrium. In contrast to the homogeneous case
([Keller, Rady, Cripps (2005)]), we furthermore show that more frequent switches of arms do not
unambiguously improve the equilibrium welfare with asymmetric players.

Related Literature:
This paper contributes to the literature on strategic experimentation with bandits, a problem stud-

ied quite widely in economics, amongst others, by [Bolton and Harris (1999)], [Keller, Rady, Cripps (2005)],
[Keller and Rady (2010)], [Klein and Rady (2011)] and [Thomas (2017)]. In all of these papers, play-
ers are homogeneous. Except in [Thomas (2017)] and [Klein and Rady (2011)], players’ bandits are
of the same type and free-riding is a common feature in all the above models except for [Thomas (2017)].

1The first paper to do so was [Bolton and Harris (1999)]. [Keller, Rady, Cripps (2005)] have introduced exponential
bandits, which we shall use here.
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Many variants of this problem have been studied in the literature. [Rosenberg, Salomon, Vieille (2013)]
and [Murto and Välimäki (2011)], for instance, assume that switches to the safe arm are irreversible
and that experimentation outcomes are private information, while [Bonatti and Hörner (2011)] and
[Heidhues, Rady, Strack (2015)] investigate the case of private actions. In [Dong (2018)], actions and
outcomes are public, but one of the players receives an initial private signal. [Rosenberg, Solan, Vieille (2007)]
analyse the role of the observability of outcomes and the correlation between risky-arm types in a set-
ting in which a switch to the safe arm is irreversible. [Besanko and Wu (2013)] use the [Keller, Rady, Cripps (2005)]
framework to study how an R&D race is impacted by market structure. [Das (2019)] analyses an
R&D race in a strategic bandit setting in which on the risky arm, players can learn both privately
and publicly. [Guo (2016)] and [Zambrano (2017)] analyse the problem of a principal delegating the
operation of a two-armed bandit to an agent; in [Klein (2016)], the bandit the agent operates has
three arms. [Banks, Olson, Porter (1997)] provide an experimental test of a single-agent two-armed
bandit problem; [Hoelzemann and Klein (2018)] do so in a strategic setting. The paper closest to
the present paper is [Keller, Rady, Cripps (2005)], who find that, with homogeneous players, there is
never an equilibrium in cutoff strategies. By contrast, we show that, with heterogeneous players, an
equilibrium in cutoff strategies may exist, and that it is welfare-maximising whenever it exists.

The rest of the paper is organised as follows. Section 2 sets out the model. Section 3 discusses
the social planner’s solution. A detailed analysis of equilibria for different ranges of heterogeneity is
undertaken in Section 4. Finally, Section 5 concludes. Payoff functions are shown in Appendix A,
while some proofs are relegated to Appendix B.

2 Two armed bandit model with heterogeneous players

There are two players (1 and 2), each of whom faces a two-armed bandit in continuous time. One
of the arms is safe, in that a player who uses it gets a flow payoff of s > 0. The risky arm can be
either good or bad. Both players’ risky arms are of the same type. If the risky arm is good, then a
player using it receives a lump sum, drawn from a time-invariant distribution with mean h > s, at the
jumping times of a Poisson process. The Poisson process governing player 1’s arrivals has intensity
λ1 = 1, while player 2’s arrive according to a Poisson process with intensity λ2 ∈ ( s

h ,1). Thus, a good
risky arm gives player 1 (2) an expected payoff flow of g1 = λ1h = h (g2 = λ2h), with g1 > g2 > s.
The parameters and the game are common knowledge.

The uncertainty in this model arises from the fact that players do not initially know whether their
risky arms are good or bad. Players start with a common prior belief p0 ∈ (0,1) that their risky arms
are good. Players have to decide in continuous time whether to choose the safe arm or the risky arm.
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At each instant, players can choose only one arm. We write ki,t = 1 (ki,t = 0) if player i ∈ {1,2} uses
his risky (safe) arm at instant t ≥ 0. Players’ actions and outcomes are publicly observable and, based
on these, they update their beliefs. Players discount the future according to the common discount rate
r > 0.

Let pt be the players’ common belief that their risky arms are good at time t ≥ 0. Given player
i’s (i ∈ {1,2}) actions {ki,t}t≥0, which are required to be progressively measurable with respect to the
available information and to satisfy ki(t) ∈ {0,1} for all t ≥ 0, player i’s expected payoff is given by

E
[∫

∞

0
re−rt [(1− ki,t)s+ ki,t ptgi]dt

]
,

where the expectation is taken with respect to the processes {ki,t}t≥0 and {pt}t≥0. As can be seen from
the objective function, there are no payoff externalities between the players. Indeed, the presence of
the other player impacts a given player’s payoffs only via the information that he generates, i.e. via
the belief.

As mentioned in the Introduction, we will focus our analysis on Markov perfect equilibria with
the players’ common posterior belief as the state variable. Formally, a Markov strategy of player i is
any left-continuous function ki : [0,1]→{0,1}, p 7→ ki(p) (i = 1,2) that is also piecewise continuous,
i.e. continuous at all but a finite number of points.

As only a good risky arm can yield positive payoffs in the form of lump sums, the arrival of a
lump sum fully reveals the risky arm to be good. Hence, if either player receives a lump sum at a time
τ ≥ 0, then pt = 1 for all t > τ . In the absence of a lump-sum arrival, the belief follows the following
law of motion for a.a. t:

d pt =−(k1,t +λ2k2,t)pt(1− pt)dt.

3 Planner’s Problem

Suppose there is a benevolent social planner, who controls the actions of both players and wants to
maximise the sum of their payoffs. Since the planner’s expected payoff at any point in time only
depends on the belief at that time and the belief follows a controlled Markov process, this is a Markov
decision problem. Therefore, it is without loss of generality for the planner to restrict himself to
Markov strategies (k1(pt),k2(pt)) with the posterior belief pt as the state variable. The Bellman
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equation for the planner’s problem is given by

v(p) = 2s+ max
k1,k2∈{0,1}

{
k1[B1(p,v)− c1(p)]+ k2[B2(p,v)− c2(p)]

}
, (1)

where we write v(p) for the planner’s value function, and, like [Keller, Rady, Cripps (2005)], define
the myopic opportunity cost of having player i play risky, ci(p) = s− pgi, and the corresponding
learning benefit

Bi(p,v) = p
λi

r
{(g1 +g2)− v(p)− v

′
(p)(1− p)}.

Note that the planner’s Bellman equation is linear in both k1 and k2, so that our restriction to action
plans {(k1,t ,k2,t)}t≥0 with ki,t ∈ {0,1} for all (i, t) is without loss in the planner’s problem. To state
the following proposition, which describes the planner’s solution, we define g = g1 +g2, λ = 1+λ2,
µ = r

λ
, u1(p) := (1− p)

(
1−p

p

)r
, u0(p) := (1− p)

(
1−p

p

)µ

.

Proposition 1 The planner’s optimal policy k∗(p) = (k∗1,k
∗
2)(p) is given by

(k∗1,k
∗
2)(p) =


(1,1) if p ∈ (p∗2,1)
(1,0) if p ∈ (p∗1, p∗2]

(0,0) if p ∈ (0, p∗1]

and the value function is

v(p) =


gp+

[
λ

λ2
s−gp∗2

]
u0(p)
u0(p∗2)

if p ∈ (p∗2,1],

s+
[g+rg1

1+r −
s

1+r

]
p+
[
s−
(g+rg1

1+r −
s

1+r

)
p∗1
] u1(p)

u1(p∗1)
if p ∈ (p∗1, p∗2],

2s if p ∈ (0, p∗1],

where p∗1 is defined as

p∗1 =
rs

(1+ r)g1 +g2−2s
, (2)

and p∗2 ∈ (p∗1,
s

g2
) is implicitly defined by v(p∗2) =

λ

λ2
s.

Proof. Proof is by a standard verification argument. Please see the Appendix B.1 for details.
By the above proposition, the belief at which player 1 switches to the safe arm in the planner’s

solution is higher than it would be if both players’ Poisson arrival rates were equal to λ1 = 1. This is
because, as player 2’s arrival rate λ2 decreases, the benefit from player 1’s experimentation decreases.
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The planner’s solution is depicted in the Figure 1.2 The planner’s value function is a smooth
convex curve which lies in the range [2s,g]. At the belief p∗2(p∗1) , player 2 (1) switches to the safe
arm.

4 Non-cooperative game

We will first analyse a player’s best responses to a given Markov strategy of the other player.
Best Responses: Fix player j’s strategy k j ( j ∈ {1,2} \ {i}). If the payoff function from player

2Parameter values for this figure: λ1 = 1; λ2 = 0.4; h = 3.5;s = 1 and r = 0.9. p∗1 = 0.1488 and p∗2 = 0.6686.
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i’s response satisfies the following Bellman equation, player i is playing a best response:3

vi(p) = s+ k j(p)λ jbi(p,vi)+ max
ki∈{0,1}

ki[λibi(p,vi)− (s−gi p)] (3)

where

bi(p,vi) = p
{gi− vi− (1− p)v

′
i}

r
.

As before, λibi(p,vi) can be interpreted as the learning benefit accruing to player i due to his own
experimentation, while λ jbi(p,vi) is the learning benefit accruing to player i from player j’s experi-
mentation. The myopic opportunity cost of experimentation continues to be ci(p) = s−gi p.

For a given k j ∈ {0,1}, from (3) we know that player i’s payoff function satisfies the Bellman
equation if and only if

ki(p)


= 1 if λibi(p,vi)> s−gi p,

∈ {0,1} if λibi(p,vi) = s−gi p,

= 0 if λibi(p,vi)< s−gi p.

If λibi(p,vi)> s−gi p then ki = 1 is the unique best response. From 3, we can conclude that this
requires vi > s+k jλ jbi(p,vi)> s+k j

λ j
λi
(s−gi p). A similar argument applies for the situations when

the best responses are ki ∈ {0,1} and ki = 0 respectively. This allows us to infer that

ki(p)


= 1 if vi > s+ k j

λ j
λi
[s−gi p],

∈ {0,1} if vi = s+ k j
λ j
λi
[s−gi p],

= 0 if vi < s+ k j
λ j
λi
[s−gi p].

This implies that when k j = 1, player i chooses the risky arm, safe arm or is indifferent between
them depending on whether his value in the (p,v) plane lies above, below, or on the line

Di(p) = s+
λ j

λi
[s−gi p] (4)

The single-agent threshold for player i is given by

p̄i =
µis

µis+(1+µi)(gi− s)
(5)

3By standard results, on any open interval of beliefs in which player j’s action choice is constant, player i’s value
function vi will be continuously differentiable. At those (finitely many) beliefs at which player j’s action changes, v′

should be understood as the left derivative of v (since beliefs can only drift down).
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where µi =
r
λi

. In Appendix A.2, we display the ODEs the players’ payoff functions satisfy, as well as
their solutions, for each possible action profile. We start off by showing that, as in the homogeneous
case ([Keller, Rady, Cripps (2005)]), no efficient equilibrium exists.

Proposition 2 In any MPE, both players play safe at all beliefs in [0, p̄1]. There is thus no efficient

MPE.

Proof. Suppose to the contrary that pl , the infimum of the set of beliefs at which at least one player
plays risky, satisfies pl < p̄1. Clearly, vi(pl) = s for both i ∈ {1,2}. We shall now distinguish two
cases depending on whether or not there exists an ε̄ > 0 such that, in any ε-right neighbourhood of
pl with ε ∈ (0, ε̄), only one player i plays risky. If there does not exist such an ε̄ > 0, i is not playing
a best response, because pl < p̄i <

s
gi

implies that the point (pl,s) is below the diagonal Di. In the
other case, player i faces the same trade-off as a single agent, and does not play a best response either,
because pl < p̄i.

In the next subsection, we will characterise the condition under which an equilibrium in cutoff
strategies exists.

4.1 Equilibrium in cutoff strategies

As we have argued in the proof of Proposition 2, there is no experimentation below the belief p̄1 in
any equilibrium. We will now argue that, in any equilibrium, only player 1 will experiment in some
right-neighbourhood of p̄1, implying that player 1 is the last player to experiment in any equilibrium.

By Proposition 2, we know that v1(p̄1) = v2(p̄1) = s, and thus, by continuity, both players’ value
functions must be below their respective diagonals Di in some neighbourhood of p̄1. Thus, in any
equilibrium, at most one player can play risky in some right-neighbourhood of p̄1. Now, suppose that
player 2 is the only player to experiment in some right-neighbourhood of p̄1. Then, the relevant ODE
(Equation 13 in Appendix A.2) gives us that λ2 p̄1(1− p̄1)v′2(p̄1+) = p̄1λ2(g2− s)− rc2(p̄1) < 0,
as p̄1 < p̄2. Thus, player 2’s value function drops below s immediately to the right of p̄1, which
contradicts his playing a best response. We can thus conclude that there exists some belief p̂1 > p̄1

such that, on (p̄1, p̂1), player 2 plays safe. As either player can always guarantee himself his single-
agent payoff by ignoring the information he gets for free from the other player, his payoff in any
equilibrium is bounded below by his single-agent payoff. Thus, in any equilibrium, v1 > s on (p̄1, p̂1],
and player 1 experiments, while player 2 free-rides, in this range.

Thus, for beliefs right above p̄1, in any equilibrium, player 1’s payoff is given by

v̄1(p) = g1 p+C̄1u1(p), (6)
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with C̄1 =
s−g1 p̄1
u1(p̄1)

. Player 2’s equilibrium payoff for these beliefs is given by

v̄2(p) = s+
(g2− s)p

1+ r
+C̄2u1(p) (7)

with C̄2 =− (g2−s)p̄1
(1+r)u1(p̄1)

.
Since C̄1 > 0 and C̄2 < 0, v̄1 is strictly convex and v̄2 is strictly concave.4 The following lemma

shows that the functions v̄i intersect the corresponding diagonals Di at a unique belief.

Lemma 1 There exists a unique p
′
1 ∈ (p̄1,1) such that v̄1(p

′
1) = D1(p

′
1), and a unique p

′
2 ∈
(

p̄2,
s

g2

)
such that v̄2(p

′
2) = D2(p

′
2).

Proof. Please refer to Appendix B.2. In the following proposition, we will show that there exists
an equilibrium in cutoff strategies if and only if the degree of asymmetry between the players is high
enough.

Proposition 3 There exists a λ ∗2 ∈ ( s
h ,1) such that there exists an equilibrium in cutoff strategies if

and only if λ2 ∈ ( s
h ,λ

∗
2 ]. In this equilibrium, player 1 plays risky on (p̄1,1] and safe otherwise, while

Player 2 plays risky on (p
′
2,1] and safe otherwise.

Proof. Please refer to Appendix B.3. Appendix B.4 shows that the belief p
′
2 where player 2

switches to the safe arm in the above equilibrium is strictly greater than p∗2, the threshold in the
planner’s solution. This shows that for p ∈ (p∗2, p

′
2], player 2 inefficiently free-rides.

The equilibrium in cutoff strategies is depicted in Figure 25. In this equilibrium, both players’
payoffs are equal to s for p≤ p̄1. For p> p̄1, the black curve represents v1 and the red curve represents
v2. For p ∈ (p̄1, p

′
2], player i’s (i = 1,2) payoff is v̄i(p). For p > p

′
2, player i’s payoff is given by

vr
i (p) = gi p+Cr

i u0(p)

with Cr
i =

v̄i(p
′
2)−gi p

′
2

u0(p′2)
.6 Player 1’s equilibrium payoff function is (strictly) convex (on (p̄1,1)); it

is smooth, except for a kink at p
′
2 (For the particular parameter values used in figure 2, we have

v
′
1(p

′+
2 ) = 1.477 and v

′
1(p

′−
2 ) = 1.21). To depict this kink in the figure, we have magnified the area

around p = p
′
2. In the magnified part, the orange curve represents v̄1 for p > p

′
2. Player 2’s payoff

4v̄1 and v̄2 are obtained from Equations 14 and 16 respectively by imposing the condition v̄i(p̄1) = s (i = 1,2).
5Parameter Values: λ1 = 1;λ2 = 0.9; h = 2;s = 1 and r = 1.2. p∗1 = 0.2857 and p∗2 = 0.4126. p

′
1 = 0.4629 and

p
′
2 = 0.4916.

6These payoffs are obtained from 12 by imposing the condition vr
i (p

′
2) = v̄i(p

′
2) (i = 1,2).
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function is strictly concave on (p̄1, p
′
2) and strictly convex on (p

′
2,1); it has an inflection point at p

′
2.

It is smooth except for a kink at p̄1.
Experimentation decisions are strategic substitutes. Therefore in any equilibrium, at the lowest

belief where some experimentation takes place, one pioneer is indifferent between choosing the safe
and the risky arm, given that the other player is free-riding. The free-rider can determine a threshold
belief p

′
2 where he is indifferent between choosing the safe arm and the risky arm, given that the

pioneer is choosing the risky arm for all beliefs between the lowest cutoff and p
′
2. This implies that

for beliefs just above p
′
2, the free-rider finds it beneficial to experiment irrespectively of the action

of the pioneer. When players are homogeneous, their free-riding opportunities are the same. At
p
′
2, the pioneer’s payoff is less than that of the free-rider as experimentation is costly. Thus, for

beliefs just above p
′
2, the pioneer has an incentive to free-ride, given that the free-rider experiments.

This explains (as shown in [Keller, Rady, Cripps (2005)]) why there does not exist an equilibrium
where both players use cutoff strategies. However, the free-riding opportunities are different for
heterogeneous players. As explained above, in any equilibrium the pioneer is always the player with
the higher productivity (player 1). The lower player 2’s productivity, the less player 1 has an incentive
to free-ride on player 2’s experimentation. If player 2’s productivity is very low, player 1 no longer has
any incentive to free-ride on 2’s experimentation for beliefs right above p

′
2. This intuitively explains

the result of Proposition 3.
Geometrically, the diagonals D1 and D2 in Figure 2 do not coincide when players are asymmetric.

As the proof of Proposition 3 shows, the condition for existence of an equilibrium in cutoff strategies
is precisely that player 2 will enter the region in which risky is dominant at a more optimistic belief
than player 1.7 This is possible if and only if the region in which risky is dominant for player 2 is
relatively small enough compared to that of player 1, i.e. if and only if λ2 is small enough compared
to λ1 = 1.

In Subsection 4.4, we show that if the players’ learning speeds are different while the expected
flow payoff from the good risky arm is the same, there again exists an equilibrium in cutoff strategies
if and only if the difference in the learning speeds is high enough. The same qualitative result obtains
for identical learning speeds but different expected payoffs from the good risky arm. Indeed, either
form of asymmetry creates differences in the players’ free-riding incentives. Diagrammatically, this
can be seen by a gap between the best-response diagonals.

7All our figures correspond to parametric values such that the point of intersection of v2 and v1 lies to the right of
p
′
2. However, for very low values of λ2, this intersection will occur to the left of p

′
2. All of our analysis goes through

unchanged for this case as well.
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4.2 Equilibria in non-cutoff strategies

In the previous subsection, we have identified a necessary and sufficient condition for the existence
of an equilibrium in cutoff strategies. In this subsection, we will analyse equilibria where at least
one of the players uses a non-cutoff strategy. To begin with, we show that even for low degrees of
asymmetry, there exists an equilibrium where player 2 uses a cutoff strategy.

Proposition 4 There exists an equilibrium in which only player 2 uses a cutoff strategy if and only

if λ2 > λ ∗2 . In this equilibrium, the cutoff for player 2’s strategy is p
′
2. Player 1 plays risky on

(p̄1, p
′
2]∪ (p1

s ,1] and safe otherwise, where p1
s > p

′
2 is the belief at which player 1’s payoff function

and D1 intersect.

Proof. Please refer to Appendix B.5.
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The equilibrium where only player 2 uses a cutoff strategy is depicted in figure 38. The black
and the orange curves depict the payoffs to player 1 and 2 respectively. As the degree of asymmetry
between the players is low, p

′
1 > p

′
2 and hence an equilibrium where both players use cutoff strategies

does not exist. In figure 3, we magnify the part around p = p
′
2. We do not show p

′
1 in the figure, but

for the parameter values used in figure 3, we have p1
s = 0.4740 < 0.4754 = p

′
1. At p = p

′
2, both v1

and v2 have a kink.9 To the immediate right of p
′
2, v1 becomes concave and v2 becomes convex. v2

remains convex for all p > p
′
2, but has a kink10 at p = p1

s . v1 has an inflection point at p = p1
s and

smoothly becomes convex at this belief.
Propositions 3 and 4 together imply that there always exists an equilibrium where player 2 uses a

cutoff strategy with p
′
2 as the cutoff. Indeed, as argued in the previous subsection, in any equilibrium,

p̄1 is the lowest belief where some experimentation takes place and only player 1 experiments at
beliefs just above p̄1. By the same token, risky is Player 2’s best reply at all beliefs above p

′
2, given

Player 1 plays risky on (p̄1, p
′
2].

When the degree of asymmetry is low, there will exist a range of beliefs just above p
′
2 where player

1 free-rides. Thus, player 1 uses a non-cutoff strategy. This explains the result of Proposition 4. In
the limit λ2 ↓ λ ∗2 , the range above p

′
2 where player 1 free-rides vanishes and hence, the equilibrium

described in Proposition 4 coincides with the equilibrium in cutoff strategies.
Equilibria where at least one player uses a non-cutoff strategy always exists, as the following

proposition shows. The following proposition, together with Proposition 3, fully characterises the set
of all Markov perfect equilibria. To state the proposition, we let vi be player i’s equilibrium payoff.
For both players n ∈ {1,2}, we define pn

S as the (unique) point of intersection of vn and Dn.11 Let
pi

S = min{p1
S, p2

S} and p j
S = max{p1

S, p2
S}.

Proposition 5 For any λ2 ∈ ( s
h ,1), there exists a continuum of Markov perfect equilibria in which at

least one player uses a non-cutoff strategy. For each integer l > 1 and each sequence of threshold be-

liefs (p̃i)
l
i=1 such that p̄1 < p̃1 < · · ·< p̃l = pi

S, there exists an equilibrium such that both players play

safe at all beliefs p≤ p̄1; player 1 plays risky and player 2 plays safe in (p̄1, p̃1]∪
⋃

i∈2N∧i<l(p̃i, p̃i+1]

, while player 1 plays safe and player 2 plays risky in
⋃

i∈2N∧i≤l(p̃i−1, p̃i]; on (pi
S, p j

S], player i

plays risky and player j plays safe, while both players play risky on (p j
S,1]. The same strategies

with l = 1 also describe an equilibrium in which only player 2 uses a cutoff strategy if and only if

8Parameter values: λ1 = 1;λ2 = 0.985;h= 2;s= 1 and r = 1.9. p̄1 = 0.3958;p
′
1 = 0.4754;p

′
2 = 0.4644 and p1

s = 0.4740.
9For the particular parameter values used in figure 3, we have v

′
1(p

′−
2 ) = 0.9694; v

′
1(p

′+
2 ) = 1.5085; v

′
2(p

′−
2 ) = 0.9894;

v
′
2(p

′+
2 ) = 0.3197.

10For the particular parameter values used in figure 3, we have v
′
2(p1−

s ) = 0.4625; v
′
2(p1+

s ) = 1.0721.
11The uniqueness of pn

S ∈ (p̄1,
s

gn
) follows from (11).
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p
′
2 = p2

S < p1
S = p̂1

S.

On [0, p̄1], both players’ value function is s. For even i < l, on (p̃i, p̃i+1], player 1’s (2’s) value

function is given by (14) ((16)), while on (p̃i−1, p̃i], player 2’s (1’s) value function is given by (14)

((16)); on (pi
S, p j

S], player i’s ( j’s) payoff is given by (14) ((16)). On (p j
S,1], both players’ payoffs are

given by (12). The constants of integration are determined by value matching.

Proof. That the proposed strategies are mutually best responses immediately follows from our discus-
sion at the top of Section 4. That such equilibria always exist follows immediately from the continuity
of players’ payoff functions and the fact that Di(p̄1)> s for both i ∈ {1,2}.

When the degree of asymmetry is low, it is easy to observe that both players have incentives for
free-riding just below p

′
2; i.e. safe and risky are mutually best responses in this region. Although an

increase in the degree of asymmetry reduces the free-riding incentives for player 1, they never vanish
completely. Therefore, there will always be a range just above p̄1 where safe and risky are mutually
best responses. Hence, equilibrium allows players to take turns in experimenting at arbitrary beliefs
in (p̄1, p

′
2). This explains the result of Proposition (5).

As p̄1 < p̄2, the proposition implies that there exist equilibria in which player 2 experiments
below his single-agent threshold p̄2. Indeed, by being the last player to experiment on (p̄1, p̃1], player
1 provides an encouragement effect to player 2, as the latter is willing to play risky on (p̃1, p̃2] only
because he knows that, should his experimentation not be successful, he will get to free-ride on player
1’s experimentation once the belief will have dropped to p̃1.

4.3 Welfare rankings of equilibria

As in [Keller, Rady, Cripps (2005)], there are two potential sources of inefficiency in our model: Play-
ers might not produce enough information, and/or they might produce the information too slowly.
In order to analyse these different effects, we define the experimentation intensity at time t ≥ 0
as Kt = λ1k1,t + λ2k2,t , and the integral

∫ T
0 Kt dt as the amount of experimentation up to time T .

[Keller, Rady, Cripps (2005)], by contrast, define the experimentation intensity at time t ≥ 0 as K̂t =

k1,t + k2,t , and the amount of experimentation up to time T as
∫ T

0 K̂t dt. Thus, we measure the out-

put of players’ experimentation efforts, with our measure taking into account that it matters for the
information-production process which player invests time in the risky arm. The corresponding con-
cepts in [Keller, Rady, Cripps (2005)], by contrast, measure the input, i.e. the overall resources spent
on producing information. In the case of homogeneous players with productivities λ , the input, as in-
dicated by their measure, of course corresponds to 1/λ times the output, as indicated by our measure.
The following result mirrors the finding in [Keller, Rady, Cripps (2005)] (see their Lemma 3.1 in con-
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junction with their Propositions 5.1 and 6.1) that the amount of experimentation is the same in any
Markov perfect equilibrium. This implies that the welfare ranking of equilibria is solely determined
by the delay in information production.

Lemma 2 Suppose there is no success on the risky arm. Then, the amount of experimentation is the

same in any Markov perfect equilibrium.

Proof. As we have seen from our characterisation of equilibria, experimentation stops at p̄1 in any
equilibrium. By Bayes’ rule, the law of motion of the belief conditional on no success is given by
d pt = −Kt pt(1− pt)dt. Thus, conditionally on no success, the amount of experimentation in any
Markov perfect equilibrium is given by ∞ as upper bound

∫
∞

0
Kt dt =

∫ p̄1

p0

− d pt

pt(1− pt)
=

[
ln
(

1− p
p

)]p̄1

p0

,

which concludes the proof.

In the following proposition, we establish that in any equilibrium in which players swap the roles
of pioneer and free-rider at least once, player 1’s (2’s) payoff will hit D1 (D2) at a more pessimistic
(optimistic) belief than in the equilibrium in cutoff strategies.

Proposition 6 Consider any equilibrium described in Proposition 5. Suppose p1
S > p̄1 is the belief

at which the equilibrium payoff of player 1 meets the line D1 and p2
S > p̄1 is the belief at which the

equilibrium payoff of player 2 meets the line D2. Then, we have p1
S < p

′
1. For l > 1 we have p2

S > p
′
2

and for l = 1, p2
S = p

′
2.

Proof. Please refer to Appendix B.6.
In the equilibrium in cutoff strategies, player 2 free-rides for all beliefs in (p̄1, p

′
2]. However, in

any other equilibrium there exists some open subset of (p̄1, p
′
2) where he experiments and player 1

free-rides. Thus, for all p ∈ (p̄1, p
′
2], the equilibrium in cutoff strategies gives the highest payoff to

player 2, as he can free-ride on the more productive player’s experimentation. This implies that, in
the range p ∈ (p̄1, p

′
2], player 2’s payoff function in any non-cutoff equilibrium lies below his payoff

in the cutoff equilibrium, and will therefore intersect the diagonal D2 at a belief higher than p
′
2. This

explains why we have p2
S > p

′
2. On the other hand, for all p ∈ (p̄1, p

′
1], player 1 experiments in

the equilibrium in cutoff strategies and receives his single-agent payoff. In any other equilibrium,
however, there exists some open subset of (p̄1, p

′
1) where his single-agent optimal action is not a best

response, and his equilibrium payoff is therefore higher. Thus, as player 1’s payoff is lowest in the
equilibrium in cutoff strategies, we have p1

S < p
′
1.
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Suppose λ2 ∈ ( s
h ,λ

∗
2 ]. This implies that the equilibrium in cutoff strategies exists. In the following

proposition, we show that the equilibrium in cutoff strategies strictly welfare dominates all other
equilibria.

Proposition 7 Suppose λ2 ≤ λ ∗2 and let vc
agg be the aggregate equilibrium payoff in the equilibrium in

cutoff strategies and vnc
agg be the aggregate equilibrium payoff in an arbitrary equilibrium in non-cutoff

strategies. Then, vc
agg ≥ vnc

agg, with the inequality strict on (p̃1,1).

Proof. Please refer to Appendix (B.7).
First, observe that in the equilibrium in cutoff strategies, both players experiment for beliefs

greater than p
′
2. Since p2

S > p
′
2 (by Proposition 6), the range of beliefs where both players experi-

ment is largest in the equilibrium in cutoff strategies. Next, in the equilibrium in cutoff strategies,
whenever only one player experiments, it is the player with the higher payoff arrival rate, player 1. In
any other equilibrium, however, there is a range of beliefs where player 2 plays the role of the lonely
pioneer. Since player 1 is more productive, in any equilibrium all experimentation ceases at p̄1, infor-
mation is most efficiently generated in the equilibrium in cutoff strategies. This intuitively explains
the result of Proposition 7. One can observe that, since, at any belief, the intensity of experimentation
is highest in the equilibrium in cutoff strategies, information generation is fastest. Thus, this equilib-
rium involves least delay. As experimentation amounts are the same in all equilibrua (Lemma 2), this
implies that the cutoff equilibrium welfare dominates all other equilibria.12

The comparison between the equilibrium in cutoff strategies and an equilibrium in which players
swap roles once is depicted in Figure 4.13 Figures 4(a) and 4(b) depict the actions of players in
the equilibrium in cutoff strategies and the equilibrium in non-cutoff strategies respectively. These
equilibria correspond to the ones depicted in Figure 4.

The thick purple14curve (v1) and the black curve (v2) in Figure 4 depict the payoffs to player 1
and 2 respectively in the equilibrium in cutoff strategies. In the equilibrium in non-cutoff strategies,
payoffs coincide for beliefs less than or equal to p̃1. At p̃1, players switch arms. The thin blue curve
depicts the payoff to player 1 and the thin yellow curve depicts the payoff to player 2 in the equilibrium
in non-cutoff strategies for p > p̃1. As argued, the blue curve meets the line D1 at a belief p1

S, which is
strictly less than p

′
1. In the region (p̃1, p1

S], player 2 experiments and player 1 free rides. At p1
s , player

12[Dong (2018)] shows that if the players’ initial beliefs are asymmetric enough, equilibrium welfare improves.
13Proposition 6 implies that the qualitative characteristics of p1

s and p2
s are the same in any equilibrium in non-cutoff

strategies. For simplicity, we consider an equilibrium in non-cutoff strategies where players swap roles only once in the
figure.

14Parameter values: λ1 = 1;λ2 = 0.9;h;s = 1 and r = 1.2. p̄1 = 0.3529;p
′
1 = 0.4629;p

′
2 = 0.4916;p1

s = 0.4499;p2
s =

0.5081 and p̃1 = 0.39.
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1 switches to the risky arm and player 2 switches to the safe arm. When the red curve meets the line
D2 at p2

s > p
′
2, player 2 switches to the risky arm again. Notice that in the equilibrium in non-cutoff

strategies, player 2’s payoff is negatively sloped at the right neighbourhood of p = p̃1. Indeed, in the
current example, we have p̃1 = 0.39 < 0.4054 = p̄2, where p̄2 is the single person threshold for player
2. This means that, in the equilibrium in non-cutoff strategies, player 2 is forced to act as the lonely
pioneer to the left of his single agent cutoff, which makes his payoff negatively sloped.15

When λ2 > λ ∗2 , the equilibrium in cutoff strategies does not exist. However, the argument in the
proof of Proposition 7 allows us to show that, on (p̄1, p

′
2], the equilibrium of Proposition 4, which

is the only equilibrium in which player 1 is experimenting throughout this range, strictly welfare-
dominates all other equilibria. Indeed, with heterogeneous players, more frequent switches have the
effect of replacing experimentation by the strong player with experimentation by the weak player
in some open subset in (p̄1, p

′
2), thereby delaying information production in this range. Thus, even

though more frequent switches can expand the range of beliefs where both experiment, there is al-
ways a welfare loss in the range (p̄1, p

′
2]. Hence, if players switch the role of pioneer and free-rider

more frequently, the equilibrium welfare is not unambiguously improved. This is in contrast to the
case with homogeneous players ([Keller, Rady, Cripps (2005)]), where the only effect of increasing
the frequency of switches is to expand the range of beliefs where both players experiment, thus un-
ambiguously speeding up information production and improving equilibrium welfare. Yet, we have
not been able to establish that the equilibrium of Proposition 4 is globally welfare-maximising.

4.4 Learning rates versus payoffs

In our baseline model, we have considered asymmetric Poisson arrival rates only. However, since the
expected lumpsum payoff from the good risky arm was the same for both players, the asymmetry in
learning rates implied that the expected flow payoff from a good risky arm was also different across
the players. In this subsection, we will analyse a model where learning rates differ but the expected
flow payoff from a good risky arm is the same for both players.

Define ĝ = λ1h1 where λ1 = 1 and h1 > 0. For any λ2 ∈ (0,1), we choose a h2 > 0 such that
λ2h2 = ĝ.

We will first analyse the social planner’s problem. Please refer to Appendix (B.10) for the explicit

15Mathematically, this can be seen as follows: Consider a function v = g2 p+C(1− p)( 1−p
p )

r
λ2 , such that the integration

constant is derived from v(p̃1) = s. Since p̃1 < p̄2, direct computation shows that v
′
(p̃1) < 0. In the equilibrium in non-

cutoff strategies, to the immediate right of p̃1, 2’s payoff is given by v2 = g2 p+c2(1− p)( 1−p
p )

r
λ2 . The integration constant

c2 is determined from v2(p̃1) = v̄2(p̃1) > s⇒ c2 >C. Direct computation shows that this implies that 2’s payoff will be
negatively sloped in some right neighbourhood of p̃1.
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form of the Bellman equation for the planner’s value function w. The following proposition will show
that the structure of the planner’s solution is the same as in Proposition 1.

Proposition 8 The planner’s optimal policy k∗(p) = (k∗1,k
∗
2)(p) is given by

(k∗1,k
∗
2)(p) =


(1,1) if p ∈ (p̄∗2,1)
(1,0) if p ∈ (p̄∗1, p̄∗2]

(0,0) if p ∈ (0, p̄∗1]

and the value function is

w(p) =


2ĝp+

[
λ

λ2
s− ĝ p̄∗2

1−λ2
λ2
−2ĝp̄∗2

]
u0(p)
u0(p̄∗2)

if p ∈ (p̄∗2,1],

s+
[

2ĝ+rĝ
1+r −

s
1+r

]
p+
[
s−
(

2ĝ+rĝ
1+r −

s
1+r

)
p̄∗1
]

u1(p)
u1(p̄∗1)

if p ∈ (p̄∗1, p̄∗2],

2s if p ∈ (0, p̄∗1],

where p̄∗1 is defined as

p̄∗1 =
rs

2(ĝ− s)+ rĝ
, (8)

and p̄∗2 ∈ (p̄∗1,
s
ĝ) is implicitly defined by w(p̄∗2) =

λ

λ2
s− ĝp̄∗2

1−λ2
λ2

.

Proof.

Proof is by a standard verification argument. Please see the Appendix B.8 for details.

We will now analyse the non-cooperative game. Please refer to Appendix (B.10) for the explicit
form of the Bellman equation player i’s (i = 1,2) value function wi satisfies.

The single agent thresholds are p̂i =
rs

rs+(r+λi)(ĝ−s) . It can be verified that p̂1 < p̂2. As in the
baseline model, we can argue that in any equilibrium, p̂1 is the lowest belief where some experimen-
tation takes place and player 1 is the last one to experiment. This implies that, in any equilibrium,
for beliefs right above p̂1, payoffs to player 1 and 2 are given by w̄1(p) and w̄2(p), respectively.16 It
can be verified that w̄1 is strictly convex and w̄2 is strictly concave. By arguments similar to those
in Lemma 1, we can infer that there exists a unique p̄′1 ∈ (p̂1,1) such that w̄1(p̄′1) = D1(p̄′1) and a
unique p̄′2 ∈ (p̂2,

s
ĝ) such that w̄2(p̄′2) = D2(p̄′2). In the following proposition, we establish that an

equilibrium in cutoff strategies exists if and only if the degree of asymmetry is high enough.

16Please refer to Appendix (B.10) for explicit expressions for these functions.
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Proposition 9 There exists a λ̂2 ∈ (0,1) such that there exists an equilibrium in cutoff strategies if

and only if λ2 ∈ (0, λ̂2]. In this equilibrium, player 1 plays risky on (p̂1,1] and safe otherwise, while

player 2 plays risky on (p̄′2,1] and safe otherwise.

Proof. Please refer to Appendix B.9 for details. Figure 5 depicts the equilibrium in cutoff strate-
gies.17 The black (red) curve depicts the payoffs to player 1 (2). Since the flow payoff obtained by
each player from a good risky arm is fixed at ĝ, the point of intersection between the best-response
line and the horizontal line w = s is the same for both players. As agents become more asymmetric,
the best response lines diverge more from each other. Due to this, there emerges a range of beliefs
where only player 2 can free ride. Hence, if the degree of asymmetry between the players is high
enough, there exists an equilibrium in cutoff strategies.

Using similar arguments, we can establish that when the players’ learning rates are equal but
their flow payoffs from a good risky arm are different, an equilibrium in cutoff strategies exists if
the asymmetry between the players is high enough. As an illustration, suppose λ1 = λ2 = λ̂ . The
lump sum received by each player from a good risky arm at the jumping times of the Poisson process
with intensity λ̂ is drawn from a time-invariant distribution. The mean of this distribution hi (i = 1,2)
is such that h1 > h2 and h2 ≥ s

λ̂
. This implies g1 > g2 ≥ s. The best response diagonal of player i

(i = 1,2) is now given by D̂i : v = 2s− gi p. Beliefs p̃′1 and p̃′2 can be defined analogously to p
′
1 and

p
′
2 above. Figure 618 shows an equilibrium in cutoff strategies in this framework. The black (red)

curve depicts the payoffs to player 1 (2). This equilibrium exists only when the players are highly
asymmetric and the best response diagonals are far apart from each other.

In both cases, if it exists, the equilibrium in cutoff strategies is welfare-maximising. The argument
is similar to above: Player 2 free-rides the most in the equilibrium in cutoff strategies, so that the
range of beliefs at which both players play risky is largest. In addition, for any equilibrium that is
not in cutoff strategies, there is an open set of beliefs in which the roles of experimenting pioneer
and free-rider are reversed as compared to the equilibrium in cutoff strategies (where only player 2
ever free-rides). In the case λ1 6= λ2, both effects lead to greater delay in information production in
the non-cutoff equilibrium. In the case λ1 = λ2 = λ̂ , the first effect leads to greater delay, while the
second effect leads to a higher opportunity cost of information production (s−g1 p < s−g2 p), in the
non-cutoff equilibrium.

17Parameter values:λ1 = 1;λ2 = 0.3;h1 = 2;h2 =
20
3 ;s = 1 and r = 1.2. p̂1 = 0.3529; p̄′1 = 0.4344; p̄′2 = 0.4779.

18Parameter values: λ1 = λ2 = 1; h1 = 2.1;h2 = 1.9; s = 1 and r = 1.2. p̃1 = 0.3315; p̃′1 = 0.4418 and p̃′2 = 0.4582.
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5 Conclusion

In this paper, we have characterised the set of Markov perfect equilibria in a two-armed bandit model
with heterogeneous players. We have shown that there always exists an equilibrium in which the
weaker player uses a cutoff strategy. If the heterogeneity is stark enough, there exists an equilibrium
in cutoff strategies. If such an equilibrium exists, it is welfare-optimal.

Thus, suppose there are two oil companies with vastly different drilling technologies, e.g. a big
multinational firm and a small local enterprise. One could argue that the difference in technological
capabilities between the two will be bigger in developing countries. On account of the big hetero-
geneity in capabilities, we should expect the equilibrium in cutoff strategies to exist. An empirically
testable prediction of our model would thus be that there will be a higher frequency of instances in
developing countries where the small local firm would free-ride on the experimentation provided by
the big multinational firm, and only enter the market after oil had been struck, even if the original
level of uncertainty regarding the presence of oil was only moderate.

We have restricted players to using one arm only at any given instant t. By the linearity of the
players’ Bellman equations, our equilibria would remain equilibria if we allowed players to select
experimentation intensities ki,t ∈ [0,1]. There might, however, be more equilibria in this case.

Our analysis has relied heavily on the characterisation of players’ best responses via the diagonals
Di (see Equation (4)), which was pioneered by [Keller, Rady, Cripps (2005)] for the homogeneous-
player case. We expect that a similar approach could, mutatis mutandis, be used to study other kinds
of asymmetries, e.g. pertaining to players’ safe-arm payoffs si. We should expect a similar result to
our Proposition 3 to hold in these cases, namely that there existed an equilibrium in cutoff strategies
if and only if the heterogeneity was stark enough.
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APPENDIX

A Ordinary Differential Equations

A.1 ODEs in the planner’s problem

Clearly, if (k1,k2) = (0,0) is played at a belief p, the planner’s payoff function satisfies v(p) = 2s.
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If the planner plays k1 = k2 = 1 on an open set of beliefs, his payoff function on this set satisfies

v(p) = 2s+B1(p,v)− c1(p)+B2(p,v)− c2(p),

which is equivalent to the ODE

λ p(1− p)v
′
(p)+(r+λ p)v(p) = (r+λ )pg. (9)

This is solved by
v(p) = gp+Cu0(p)

where C is a constant of integration.
By the same token, the ODE for (k1,k2) = (1,0) is given by

p(1− p)v
′
(p)+(r+ p)v(p) = r(s+ pg1)+ pg. (10)

This is solved by

v(p) = s+
[

g+ rg1

1+ r
− s

1+ r

]
p+Cu1(p).

A.2 ODEs of players in the non-cooperative game

If k1 = k2 = 0, both players’ payoff functions satisfy vi(p) = s.
If k1 = k2 = 1 prevails on an open set of beliefs in the non-cooperative game, both players’ value

function for beliefs in this set satisfies

λ p(1− p)v
′
i(p)+(r+λ p)vi(p) = (r+λ )pgi. (11)

This is solved by
vi = gi p+Cu0(p) (12)

where C is a constant of integration.
If ki = 1 and k j = 0, player i’s payoff function satisfies

λi p(1− p)v
′
i(p)+(r+λi p)vi(p) = (r+λi)pgi. (13)

Solving this, we get
vi(p) = gi p+Cui(p) (14)
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where ui(p) = (1− p)[ (1−p)
p ]µi and µi =

r
λi

. Player j’s payoff function satisfies

λi p(1− p)v
′
j(p)+(r+λi p)v j(p) = rs+λi pg j. (15)

This is solved by

v j = s+
λi

λi + r
(g j− s)p+Cui(p). (16)

B Proofs

B.1 Proof of Proposition 1

The function v satisfies v = 2s on [0, p∗1], v = 2s+B1− c1 on (p∗1, p∗2] and v = 2s+B1− c1 +B2− c2

on (p∗2,1];
19 thus, v is the payoff function associated with the policy k∗.20 We shall first show that v is

of class C1, (strictly) increasing and (strictly) convex (on (p∗1,1)).
One computes that, for p ∈ (p∗1, p∗2), B1(p,v)− c1(p) = ψ(p), where ψ is defined as

ψ(p) =−s+ pg1 +
1
r

p
[

g− s− g+ rg1

1+ r
+

s
1+ r

+
r
p

(
s− p∗1

(
g+ rg1

1+ r
− s

r+1

))
u1(p)
u1(p∗1)

]
.

Direct computation shows that u′′1 > 0 and s− p∗1
(g+rg1

1+r −
s

1+r

)
> 0, so that ψ , and hence v|(p∗1,p

∗
2)

,
is strictly convex. One furthermore shows by direct computation that ψ(p∗1) = ψ ′(p∗1) = 0, implying
that v|(0,p∗2) is of class C1.

We shall now show that p∗2 is well-defined. Indeed, by definition, x = p∗2 must satisfy[
g+ rg1

1+ r
− s

1+ r

]
x+
[

s−
(

g+ rg1

1+ r
− s

1+ r

)
p∗1

]
u1(x)

u1(p∗1)
=

s
λ2

.

The left-hand side of this equation is strictly increasing in x for x > p∗1 and equal to s < s
λ2

at x = p∗1.
Furthermore, at x = s

g2
, the left-hand side exceeds

[g+rg1
1+r −

s
1+r

] s
g2

> s
λ2

. By continuity, the equation
thus admits of a unique root p∗2 ∈ (p∗1,

s
g2
).

As p∗2 <
s

g2
, λ

λ2
s− p∗2g > 0, and v|[p∗2,1] is strictly convex as well. It remains to show that v|[p∗2,1] is

also strictly increasing. By convexity, it is sufficient to show smooth pasting at p∗2. By the ODE for the
region (p∗1, p∗2) (Equation 10 in Appendix A.1), we have p∗2(1− p∗2)v

′(p∗2−)=
[
rs+ rp∗2g1 + p∗2g− (r+ p∗2)

λ

λ2
s
]
.

19We suppress arguments whenever this is convenient.
20In Appendix A.1, we display the ODEs that v satisfies for each range of beliefs and the corresponding general form

of v for that range. The specific value of v is obtained by value matching.
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By the ODE for the (p∗2,1)-region (Equation 9 in Appendix A.1), we find p∗2(1− p∗2)v
′(p∗2+) =[

(r+λ )p∗2g− (r+λ p∗2)
λ

λ2
s
]
/λ , and hence v′(p∗2+) = v′(p∗2−).

It remains to show that v solves the Bellman equation, i.e. that Bi ≤ ci for both i ∈ {1,2} on
[0, p∗1]; B1 ≥ c1 and B2 ≤ c2 on (p∗1, p∗2]; and Bi ≥ ci for both i ∈ {1,2} on (p∗2,1]. First, let p ∈
[0, p∗1]. In this case, v = 2s, and Bi ≤ ci if and only if p ≤ rs

rgi+λi(g−2s) , which is verified for all
p ≤ p∗1. Now, let p ∈ (p∗1, p∗2]. As v is strictly increasing in this range, v = 2s+B1− c1 > 2s, and
thus B1 > c1. Moreover, v = 2s+B1−c1 implies that B2 = λ2B1 = λ2 (v− s− pg1)≤ s− pg2 = c2 if
and only if v ≤ λ

λ2
s, which is verified as p ≤ p∗2. Finally, let p ∈ (p∗2,1). In this range, we have that

g− v− (1− p)v′ = r
λ p

(
λ

λ2
s− p∗2g

)
u0(p)
u0(p∗2)

, so that Bi =
λi
λ

v− pgi, which exceeds ci = s− pgi if and

only if v≥ λ

λi
s. By monotonicity of v, v≥ λ

λ2
s > λ s in this range, which completes the proof.

B.2 Proof of Lemma 1

The function v̄1 is strictly increasing, while D1 is strictly decreasing. Furthermore, v̄1(p̄1) < D1(p̄1)

and v̄1(1)> D1(1). Since both v̄1 and D1 are moreover continuous, there exists a unique p
′
1 ∈ (p̄1,1)

such that v̄1(p
′
1) = D1(p

′
1).

As C̄2 < 0, we have

v̄2(p̄2)< s+
[g2− s]p̄2

1+ r
= s+

[g2− s]
1+ r

µ2s
(µ2 +1)g2− s

≡ Ψ̄.

On the other hand, D2(p̄2) = s+ s[g2−s]
λ2[(µ2+1)g2−s] . This implies

D2(p̄2)− Ψ̄ =
s[g2− s]

[(µ2 +1)g2− s]λ2(1+ r)
> 0.

Hence, D2(p̄2) > v̄2(p̄2). Furthermore, the function v̄2 is strictly increasing, and D2 is strictly de-
creasing, on

(
p̄2,

s
g2

)
, while v̄2

(
s

g2

)
> D2

(
s

g2

)
= s. Since both v̄2 and D2 are moreover continuous,

there exists a unique p
′
2 ∈
(

p̄2,
s

g2

)
such that v̄2(p

′
2) = D2(p

′
2).

B.3 Proof of Proposition 3

Proof. By our previous arguments, in any equilibrium in cutoff strategies, player 1 will play risky on
(p̄1,1] and safe otherwise. In response, by the definition of p

′
2, player 2 must play risky on (p

′
2,1] and

safe otherwise, if there is an equilibrium in cutoff strategies. Indeed, below p
′
2, player 2 is playing a

best response to player 1’s action choice by the definition of p
′
2. Since D2 is decreasing, it is sufficient
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to show that player 2’s payoff function is increasing on [p
′
2,1] in order to show that he is also playing

a best response at beliefs above p
′
2. Firstly, we note that the closed-form expression for player 2’s

payoff function (see Equation 12 in Appendix A.2) implies that player 2’s payoff v2 is strictly convex
on (p

′
2,1), as v2(p

′
2) = D2(p

′
2) > g2 p

′
2, where the inequality follows from p

′
2 < s

g2
(see Lemma 1).

Furthermore, the relevant ODEs (Equations 15 and 11 in Appendix A.2) show that v2(p
′
2) = D2(p

′
2)

implies smooth pasting at p
′
2. As moreover v̄′2 > 0 (as C̄2 < 0 and u′1 < 0), we can conclude that player

2’s value function is strictly increasing on (p
′
2,1) as well, and hence that player 2 is playing a best

response at beliefs above p
′
2.

Thus, the candidate strategy profile is indeed an equilibrium if and only if player 1’s strategy is
a best response to player 2’s. This requires player 2 to choose the safe arm for all beliefs at which
player 1’s payoff is below D1. Thus, it remains to determine under what conditions p

′
2 ≥ p

′
1.

We will first argue that p
′
1 (p

′
2) is increasing (decreasing) in λ2. Recall that p

′
1 is the point of

intersection of the function v̄1 and the line D1. As λ2 decreases, the line D1 rotates anticlockwise
around the point ( s

g1
,s). Since v̄1 is independent of λ2, p

′
1 decreases as λ2 decreases. On the other

hand, as λ2 decreases, the line D2 shifts to the right and becomes steeper. By direct computation, one
shows that v̄2 becomes flatter as λ2 decreases. This implies that p

′
2 increases.

Consider the case λ2 ↓ s
h . Then, D2→ s+ (s−sp)

λ2
. Thus, the belief p̂ such that D2(p̂) = s will tend

to 1. Moreover, v̄2→ s. Hence, p
′
2→ 1. However, D1 still intersects the line s at p = s

g1
, implying

that p′1 ≤
s

g1
< p

′
2.

Next, we consider the case λ2 ↑ 1 and argue that there exists a left neighborhood of 1 such that, for
all λ2 in this neighborhood, p

′
2 < p

′
1. Now, suppose that v̄1(p†) = v̄2(p†) while v̄′1(p†) ≥ v̄′2(p†) for

some p† in the interior of the (1,0)-region. The relevant ODEs then imply that p† ≥ p̌ = rs
rg1+(g1−g2)

.
It thus follows that v̄2 > v̄1 for all beliefs in (p̄1, p̌]. Note that p̌< s

g1
and p̌ ↑ s

g1
as λ2 ↑ 1. Furthermore,

recall that p′1 is implicitly defined by

(1+λ2)(g1 p′1− s)+C̄1u1(p′1) = 0,

where we note that C̄1 and u1 are both independent of λ2. This implies that (1) p′1 < s
g1

for all
λ2 ∈ [ s

h ,1] (as C̄1 > 0 and u1 > 0 for p < 1), and (2) that p′1 is a continuous function of λ2 (by the
Implicit Function Theorem). Therefore p̂ = maxλ2∈[ s

h ,1]
p′1 < s

g1
. Thus, we can choose λ 2 ∈ ( s

h ,1)
such that, for all λ2 ∈ [λ 2,1], p̌ > p̂, and therefore v̄2 > v̄1 on (p̄1, p′1]. It thus follows that, for
λ2 ∈ [λ 2,1], p̃2 < p′1, where p̃2 is the belief where the function v̄2 intersects the line D1. As p′2 ↓ p̃2

for λ2 ↑ 1, we can conclude that there exists some λ̂ 2 ∈ ( s
h ,1) such that, for all λ2 ∈ (λ̂ 2,1), p′2 < p′1.

Thus, by monotonicity of p
′
1 and p

′
2 in λ2, there exists a unique λ ∗2 ∈ ( s

h ,1) such that p
′
2 ≥ p

′
1 if and
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only if λ2 ∈ ( s
h ,λ

∗
2 ].

B.4 To show that p∗2 < p
′
2

Recall from the proof of Proposition 8 that p∗2 was implicitly defined as the unique root of the (for
p > p∗1) strictly increasing function ζ , where

ζ (p) =
[

g1 +
g2− s
1+ r

]
p+
[

s−
(

g1 +
g2− s
1+ r

)
p∗1

]
u1(p)
u1(p∗1)

− s
λ2

.

By the same token, p
′
2 is implicitly defined by v̄2(p

′
2) = D2(p

′
2), which is equivalent to

g2− s
1+ r

p
′
2 + p

′
2g1−

s
λ2

=
g2− s
1+ r

p̄1
u1(p

′
2)

u1(p̄1)
.

As p
′
2 > p̄2 > p∗1, it remains to show that

ζ (p
′
2) =

g2− s
1+ r

p̄1
u1(p

′
2)

u1(p̄1)
+

[
s−
(

g1 +
g2− s
1+ r

)
p∗1

]
u1(p

′
2)

u1(p∗1)
> 0.

For this, it is sufficient that

s−
(

g1 +
g2− s
1+ r

)
p∗1 > 0,

which follows by direct computation.

B.5 Proof of Proposition 4

If λ2 ≤ λ ∗2 , p
′
1 ≤ p

′
2, by the proof of Proposition 3. Suppose to the contrary that the equilibrium in

which only player 2 uses a cutoff exists. By Proposition 6, p1
S < p

′
1 ≤ p

′
2 = p2

S, a contradiction to the
characterisation of this equilibrium in Proposition 5.

Now, suppose λ2 > λ ∗2 . By the proof of Proposition 3, p
′
1 > p

′
2. It thus remains to show that

p̂1
S > p

′
2. Yet, player 1’s payoff from the conjectured equilibrium strategies at p

′
2 is given by v̄1(p

′
2)<

D1(p
′
2), the inequality being immediately implied by p

′
1 > p

′
2, we have p̂1

S > p
′
2, and, by Proposition

5, the equilibrium exists.
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B.6 Proof of Proposition 6

First, consider l > 1. It is sufficient to show that v̄1 < v1 and v̄2 > v2 on (p̃1, p j
S], where vn is player

n’s equilibrium payoff function.
Note that v̄n(p̃1) = vn(p̃1) for both n∈ {1,2} and suppose that v̄2(p̃i−1)≥ v2(p̃i−1) and v̄1(p̃i−1)≤

v1(p̃i−1) for some i ∈ {2, · · · ,k}. Suppose that i−1≥ 1 is odd, and let vrr
1 be player 1’s payoff from

deviating to playing risky on (p̃i−1, p̃i]. By construction, vrr
1 (p̃i−1) = v1(p̃i−1)≥ v̄1(p̃i−1). Suppose to

the contrary that there exists a belief p ∈ (p̃i−1, p̃i] such that v̄1(p) = vrr
1 (p). The relevant ODEs ((13)

and (11)) imply that vrr
′

1 (p−) > v̄′1(p−). As vrr
1 (p̃i−1) = v1(p̃i−1) ≥ v̄1(p̃i−1), this implies that there

exists a p̂ ∈ [p̃i−1, p̃i) such that vrr
1 (p̂) = v̄1(p̂) and vrr

′

1 (p̂+) < v̄′1(p̂+), a contradiction to (13) and
(11). By the same token, suppose that there exists a belief p ∈ (p̃i−1, p̃i] such that v2(p) = v̄2(p). As
s > pg2, the relevant ODEs ((13) and (15)) imply that v̄

′
2(p−)> v′2(p−). As v̄2(p̃i−1)≥ v2(p̃i−1), this

implies that there exists a p̂∈ [p̃i−1, p̃i) such that v2(p̂) = v̄2(p̂) and v
′
2(p̂+)> v̄′2(p̂+), a contradiction

to (13) and (15).
Now, let i− 1 ≥ 2 be even. Note that our previous step implies that v̄2(p̃i−1) > v2(p̃i−1) and

v̄1(p̃i−1) < v1(p̃i−1). Suppose that there exists a p ∈ (p̃i−1, p̃i] such that vn(p) = v̄n(p) for an n ∈
{1,2}. As (k1,k2) = (1,0) on (p̃i−1, p̃i], this immediately implies that vn(p̃i−1) = v̄n(p̃i−1), a contra-
diction.

On (p̃k, p j
S], a similar argument to the case of even (odd) i−1 applies if j = 2 ( j = 1), so that we

can conclude that v̄1 < v1 and v̄2 > v2 on (p̄1, p j
S], and hence p1

S < p
′
1 and p2

S > p′2.
For l = 1, from the equilibrium characterisation we know that p2

S = p
′
2 and the above argument to

show p1
S < p

′
1 still applies.

B.7 Proof of Proposition 7

If player i (i = 1,2) experiments and player j ( j = 1,2, j 6= i) free rides then the players’ aggregate
equilibrium payoff is given by vagg = vi + v j, with vi satisfying the ODE (13) and v j satisfying the
ODE (15). If both players experiment then vagg = v1 + v2 and vn (n = 1,2) satisfy the ODE (11).

From Proposition 5, we know that vc
agg(p̃1) = vnc

agg(p̃1). Suppose vc
agg(p̃i−1) ≥ vnc

agg(p̃i−1) for
some i ∈ {2,3, ....,k}. Suppose first that i− 1 ≥ 1 is odd. If there exists a p ∈ (p̃i−1, p̃i] such that
vc

agg(p) = vnc
agg(p), then by the ODEs (13) and (15), we can conclude that vc′

agg(p−) > vnc′
agg(p−).

This implies there exists a p̂ ∈ [p̃i−1, p) such that vc
agg(p̂) = vnc

agg(p̂) and vc′
agg(p̂+) < vnc′

agg(p̂+), a
contradiction to ODEs (13) and (15).

Suppose i−1≥ 2 is even. Then from the previous step we can infer that vc
agg(p̃i−1)> vnc

agg(p̃i−1).
In both kinds of equilibria, if i− 1 is even, (k1,k2) = (1,0) on (p̃i−1, p̃i]. This implies that we have
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vc
agg(p)> vnc

agg(p) for all p ∈ (p̃i−1, p̃i]. Thus, for all p ∈ (p̃1, p̃k], vc
agg(p)> vnc

agg(p).
As λ2 ≤ λ ∗2 , we have p̃k = p1

S. An argument similar to that for even i−1 shows that vc
agg > vnc

agg on
p ∈ (p1

S, p
′
2]. Now, suppose that there exists a p̂ ∈ (p

′
2, p2

S] such that vc
agg(p̂) = vnc

agg(p̂). By the ODEs
(13) and (11), this implies vc′

agg(p̂−)> vnc′
agg(p̂−). This leads to a contradiction by the same argument

as above. As (k1,k2) = (1,1) prevails in both equilibria on (p2
S,1), the claim follows.

B.8 Proof of Proposition 8

The function w satisfies w = 2s on [0, p̄∗1], v = 2s+ B̄1− ĉ on (p̄∗1, p̄∗2] and w = 2s+ B̄1− c̄+ B̄2− c̄ on
(p̄∗2,1];thus, w is the payoff function associated with the policy k∗.21 We shall first show that w is of
class C1, (strictly) increasing and (strictly) convex (on (p̄∗1,1)).

As in Proposition 1, we can compute for p ∈ (p̄∗1, p̄∗2), B̄1(p,v)− c̄(p) = φ(p), where φ is defined
as

φ(p) =−s+ pĝ+
1
r

p
[

2ĝ− s− 2ĝ+ rĝ
1+ r

+
s

1+ r
+

r
p

(
s− p̄∗1

(
2ĝ+ rĝ
1+ r

− s
r+1

))
u1(p)
u1(p̄∗1)

]
.

Direct computation shows that u′′1 > 0 and s− p̄∗1
(

2ĝ+rĝ
1+r −

s
1+r

)
> 0, so that φ , and hence w|(p̄∗1,p̄

∗
2)

is strictly convex. One furthermore shows by direct computation that φ(p̄∗1) = φ ′(p̄∗1) = 0, implying
that w|(0,p̄∗2) is of class C1.

We shall now show that p̄∗2 is well-defined. Indeed, by definition, x = p̄∗2 must satisfy

s+
[

2ĝ+ rĝ
1+ r

− s
1+ r

]
x+
[

s−
(

2ĝ+ rĝ
1+ r

− s
1+ r

)
p̄∗1

]
u1(x)

u1(p̄∗1)
+

ĝ[1−λ2]

λ2
x =

λ

λ2
s.

The left-hand side of this equation is strictly increasing in x for x> p̄∗1 and equal to s+ s
λ2

[ĝ(2λ2+r)−2λ2s]
[ĝ(2+r)−2s] <

λ

λ2
s at x = p̄∗1. Furthermore, at x = s

ĝ , the left-hand side exceeds s+
[

2ĝ+rĝ
1+r −

s
1+r

]
s
ĝ > λ

λ2
s. By conti-

nuity, the equation thus admits of a unique root p̄∗2 ∈ (p̄∗1,
s
ĝ).

As p̄∗2 <
s
ĝ , λ

λ2
s− ĝ[1−λ2]

λ2
p̄∗2−2ĝ p̄∗2 > 0, and w|[p̄∗2,1] is strictly convex as well. It remains to show

that w|[p̄∗2,1] is also strictly increasing. By convexity, it is sufficient to show smooth pasting at p̄∗2. From
17, we can infer that for the region (p̄∗1, p̄∗2) (Equation 10 in Appendix A.1), p̄∗2(1− p̄∗2)w

′(p̄∗2−) =[
rs+ r p̄∗2ĝ+ p̄∗22ĝ− (r+ p̄∗2)[

λ

λ2
s− ĝ(1−λ2)

λ2
p̄∗2]
]
. Similarly, for the region (p̄∗2,1), we find p̄∗2(1−

p̄∗2)w
′(p̄∗2+) =

[
(r+λ )p̄∗22ĝ− (r+λ p̄∗2)[

λ

λ2
s− ĝ(1−λ2)

λ2
p̄∗2]
]
/λ , and hence w′(p̄∗2+) = w′(p̄∗2−).

21As in Appendix A.1, from 17 we can obtain the ODEs that w satisfies for each range of beliefs and the corresponding
general form of w for that range.
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It remains to show that w solves the Bellman equation, i.e. that B̄i≤ c̄ for both i∈ {1,2} on [0, p̄∗1];
B̄1 ≥ c̄ and B̄2 ≤ c̄ on (p̄∗1, p̄∗2]; and B̄i ≥ c̄ for both i ∈ {1,2} on (p̄∗2,1]. First, consider p ∈ [0, p̄∗1].
In this case, w = 2s, and B̄i ≤ c̄ if and only if p ≤ rs

rĝ+λi(2ĝ−2s) , which is verified for all p ≤ p̄∗1.
Now, consider p ∈ (p̄∗1, p̄∗2]. As w is strictly increasing in this range, w = 2s+ B̄1− c̄ > 2s, and thus
B̄1 > c̄. Moreover, w = 2s+ B̄1− c̄ implies that B̄2 = λ2B̄1 = λ2 (w− s− pĝ)≤ s− pĝ = c̄ if and only
if w≤ λ

λ2
s− ĝp[1−λ2]

λ2
, which is verified as p≤ p̄∗2. Finally, let p ∈ (p̄∗2,1). In this range, we have that

2ĝ−w− (1− p)w′ = r
λ p

(
λ

λ2
s− p̄∗22ĝ

)
u0(p)
u0(p̄∗2)

, so that B̄2 =
λ2
λ

w− λ2
λ

2ĝp, which exceeds c̄ = s− pĝ if

and only if w≥ λ

λ2
s− ĝp[1−λ2]

λ2
. By monotonicity of w, w≥ λ

λ2
s− ĝp[1−λ2]

λ2
in this range, which implies

B̄2 ≥ c̄. Also, B̄1 =
B̄2
λ2

> B̄2 ≥ c̄. This completes the proof.

B.9 Proof of Proposition 9

As for Proposition 3, we need to establish that p̄′2 ≥ p̄′1 if and only if λ2 > λ̂2, for some λ̂2 ∈ (0,1).
As λ2 increases, D̄1 (D̄2) continuously rotates clockwise (anti-clockwise). As w̄i (i = 1,2) are inde-
pendent of λ2, it follows immediately that p̄′1 ( p̄′2) is increasing (decreasing) in λ2. As λ2 ↑ 1, D̄1 and
D̄2 coincide in the limit, and, since w̄2 > w̄1 on (p̂1,1), this implies p̄′2 < p̄′1. On the other hand, as
λ2 ↓ 0, p̄′1→ p̂1 and p̄′2→

s
ĝ > p̂1. This concludes the proof.

B.10 Equations for subsection 4.4

Consider the case when λ1 > λ2, but g1 = g2 = ĝ.
Planner’s Problem:
The planner’s value function w satisfies

w(p) = 2s+ max
k1,k2∈{0,1}

{k1[B̄1(p,w)− c̄(p)]+ k2[B̄2(p,w)− c̄(p)]} (17)

where

B̄i(p,w) =
λi p[2ĝ−w(p)−w

′
(p)(1− p)]

r
and c̄(p) = s− ĝp.

Non-Cooperative Game:
Player i’s value function wi satisfies

wi(p) = s+ k j(p)λ jb̄i(p,wi)+ max
ki∈{0,1}

ki[λib̄i(p,wi)− (s− ĝp)] (18)
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where

b̄i(p,w) = p
ĝ−wi(p)− (1− p)w

′
i(p)

r
As before, we can derive the best response diagonals as

D̄i(p) = s+
λ j

λi
[s− ĝp]

For beliefs right above p̂1, payoffs to player 1 and 2 are given by

w̄1(p) = ĝp+[s− ĝp̂1]
u1(p)
u1(p̂1)

,

and
w̄2(p) = s+

ĝ− s
1+ r

p− ĝ− s
1+ r

p̂1
u1(p)
u1(p̂1)

,

respectively.
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