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Abstract

We study a two-player game of strategic experimentation with exponential bandits à
la Keller, Rady and Cripps (2005) where the safe-arm payoff is different across players.
We show that, as in Das, Klein and Schmid (2020), there exists an equilibrium in cut-
off strategies if and only if the difference in safe-arm payoffs is large enough. In the
equilibrium in cutoff strategies, the player with the higher safe-arm payoff conducts less
experimentation. This feature of the equilibrium offers an explanation for the fact that
oftentimes technological innovations are due to startups rather than established market
leaders.

JEL Classification Numbers:C73, D83, O31 Keywords: Two-armed Bandit, Heteroge-
neous Agents, Free-Riding, Learning

1 Introduction
There are many situations when information generated through exploration by one agent is
helpful to other agents as well. For example, when, in 2008, Tesla launched the Roadster,
the first highway-compatible all-electric car, using lithium ion battery cells, other automobile
companies became aware of the prospect of using lithium ion; hence gradually, electric cars were
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launched by companies like Nissan, Citroën and BMW. In the economics literature, such games
with informational externalities1 have been analysed using models of strategic experimentation
with bandits. Most of this literature, however, has been concerned with homogeneous players.
However, car manufacturers clearly differ widely in terms of market shares. For example, when
Tesla was launched in 2003, non-electric automobile markets were dominated by companies like
General Motors and Toyota. In terms of a two-armed bandit model, this means the safe-arm
payoffs were different across players. In this article, we aim to analyse the impact of asymmetric
safe-arm options in a game of strategic experimentation with two-armed exponential bandits.

The strategic exponential-bandit model with homogeneous players has been introduced in
a seminal paper by Keller, Rady and Cripps (2005). Das, Klein and Schmid (2020) has
introduced asymmetry between the players in terms of different payoff arrival rates. In this
article, we consider a variant of the two-armed bandit model where the asymmetry pertains to
players’ safe-arm payoffs. While we assume the payoff arrival rates on a good risky arm to be
the same across the players, each player has a different flow payoff from their respective safe
arm. In all other aspects, our model is identical to the canonical strategic exponential-bandit
model of Keller, Rady and Cripps (2005). The latter show that with homogeneous players,
there does not exist a Markov perfect equilibrium in which both players use a cut-off strategy.
In any equilibrium, players swap the roles of pioneer and free-rider at least once. By contrast,
Das, Klein and Schmid (2020) shows that, with sufficiently different payoff arrival rates from
a good risky arm, there exists an equilibrium where both players use cut-off strategies. The
equilibrium is unique in the class of equilibria in cutoff strategies; whenever only one player
free-rides and the other experiments, it is always the player with the lower arrival rate who
free-rides in the equilibrium in cutoff strategies.

In this article, we show that this feature is robust to the type of asymmetry across players.
In particular, we show that, if the safe arm flow payoffs across players are sufficiently different,
there exists an equilibrium where both players use a cut-off strategy. As in Das, Klein and
Schmid (2020), this equilibrium is unique in the class of MPE in cut-off strategies. Whenever
only one player experiments in equilibrium, it is the player with the lower safe-arm payoff.

In the context of our automobile example, this implies that a company that has a greater
market share for non-electric vehicles will put relatively less effort into innovating by, e.g.,
offering an electric vehicle than a new entrant with a lower safe-arm payoff. It is indeed the case
that the first highway-compatible electric vehicle was—arguably surprisingly—launched by a

1At the time of the introduction of a new product, a market will typically be very far from saturation, so
that it seems reasonable to abstract from product-market competition between firms.
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small startup company from California named Tesla, rather than by the established automobile
giants like General Motors or Toyota. There are other instances as well when technological
innovations have come from startups rather than established market leaders. For example,
Christensen (2013) finds that over a period of two decades from 1976, each new generation
of hard drives became smaller in size than the previous one, and a different set of companies
dominated the market in each generation. In a recent paper, Awaya and Krishna (2021)
have offered an explanation as to why, in many instances, technological innovations come from
startups rather than firms that are already established in the respective industry. They consider
a strategic bandit model where players can either innovate or not. The established incumbent
is better informed about the viability of the innovation. Their main result shows that the
incumbent tends to innovate less as better information dulls its incentive to learn from its
rival. Our equilibrium in cutoff strategies offers a simple alternative explanation for the same
phenomenon. Our model has the feature that if a company is working towards an innovation,
it has to divert some resources from the market where it is already established. Hence, the
opportunity cost of pursuing an innovation is higher for an already established market leader
than for a startup; hence, the latter will be more inclined to persevere in its pursuit of innovation.

1.1 Related Literature

The paper contributes to the literature on strategic bandit models, a problem studied widely
in economics. Some of the seminal papers in this area are by Bolton and Harris (1999), Keller,
Rady and Cripps (2005), Keller and Rady (2010), Klein and Rady (2011), Klein (2013) and
Thomas (2021). All these papers deal with symmetric players. The paper that is closest to
the present article is Das, Klein and Schmid (2020), where we demonstrate how an equilibrium
in cut-off strategies can exist if players have different learning abilities concerning the risky
arm. In the current paper, we show that the same conclusion holds if the players have different
safe-arm payoffs, while their innate exploration abilities are the same.

The rest of the paper is organised as follows. Section 2 describes the two-armed bandit
model with different safe-arm payoffs. Sections 3 and 4 analyse the social planner’s problem,
and the non-cooperative game, respectively. Section 5 concludes. Our results are proved in the
Appendix.
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2 Two-armed bandit model with different safe-arm payoffs
There are two players (1 and 2), each of whom faces a two-armed bandit in continuous time.
One of the arms is safe. If player i ∈ {1,2} uses it, he gets a flow payoff of si, where 0 < s1 < s2.
The risky arm can be either good or bad. Both players’ risky arms are of the same quality. If the
risky arm is good, then a player using it receives a lump sum at the jumping times of a Poisson
process with parameter λ > 0; the lump sum is drawn from a time-invariant distribution with
mean h > 0. If the risky arm is bad, it never yields any payoff. Thus, a good risky arm gives
both players an expected flow payoff of g = λh, where we assume that 0 < s1 < s2 < g. In all
other aspects, the model is similar to the one in Das, Klein and Schmid (2020). The parameter
values and the game are common knowledge.

Players do not initially know whether their risky arms are good or bad. They start with
a common prior belief p0 ∈ (0,1) that their risky arms are good. Players have to decide in
continuous time whether to choose the risky arm or the safe arm, and at each instant a player
can choose only one arm. We write ki,t = 1(0) if player i ∈ {1,2} uses the risky (safe) arm at
instant t ∈ R+. Players’ actions and outcomes are perfectly publicly observable. This implies
that players have a common posterior belief pt at all times t ≥ 0. Players discount the future
according to the common discount rate r > 0.

Let pt be the players’ common belief that their risky arm is good at time t ≥ 0. Since only
a good risky arm can ever yield positive payoffs, the arrival of a lump sum fully reveals the
risky arm to be good. In the absence of a lump-sum arrival, by Bayes’ rule, the belief follows
the following law of motion:

d pt =−λ (k1,t + k2,t)pt(1− pt)dt.

In the next section, we characterise a utilitarian planner’s solution.

3 The Planner’s Solution
The planner’s objective is to maximise the sum of the players’ expected discounted payoffs. The
planner’s action is denoted by the pair (k1,k2) (ki ∈ {1,2}), where ki = 0(1) denotes that the
planner has allocated player i to the safe (risky) arm. The planner’s value function v satisfies
the Bellman equation
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v(p) = s1 + s2 + max
k1∈{0,1}

k1[B(p,v)− c1(p)]+ max
k2∈{0,1}

k2[B(p,v)− c2(p)]

where B(p,v) = λ p{2g−v−v
′
(1−p)}

r and ci(p) = si − gp (i = 1,2). We characterise the planner’s
solution in the following proposition.

Proposition 1 Let p∗1 := rs1
(2λ+r)g−λ (s1+s2)

. There exists a threshold p∗2 ∈
(

p∗1,
s2
g

)
such that the

planner’s optimal policy is given by

(k∗1(p),k∗2(p)) =


(1,1) if p > p∗2
(1,0) if p∗1 < p ≤ p∗2
(0,0) if p ≤ p∗1

.

The planner’s value is C1, (strictly) increasing and convex (on (p∗1,1)), and is given by

v(p)=


2pg+C11(1− p)

(
1−p

p

) r
2λ

=: v(1,1)(p) if p > p∗2

s2 +
(2λ+r)g−λ s2

λ+r p+ 1−p
1−p∗1

(
(1−p)p∗1
(1−p∗1)p

) r
λ
[
s1 − (2λ+r)g−λ s2

λ+r p∗1
]

=: v(1,0)(p) if p∗1 < p ≤ p∗2
s1 + s2 =: v(0,0)(p) if p ≤ p∗1

,

where the threshold p∗2 is implicitly defined by v(1,0)(p∗2) = 2s2, and the constant of integration
C11 > 0 is such that v(1,1)(p∗2) = 2s2.

The proof can be found in Appendix (A). Next, we turn our attention to the analysis of the
non-cooperative game.

4 The Non-Cooperative Game
In the non-cooperative game, we restrict ourselves to Markovian strategies with the common
posterior belief as the state variable, defined as mappings ki : [0,1]→{0,1}, where ki(p) = 0(1)
indicates that player i ∈ {1,2} is choosing the safe (risky) arm, if the common posterior belief
is p ∈ [0,1]. The Bellman equations for players 1 and 2’s value functions can respectively be
written as

v1(p) = s1 + k2b(p,v1)+ max
k1∈{0,1}

k1[b(p,v1)− c1(p)],
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and
v2(p) = s2 + k1b(p,v2)+ max

k2∈{0,1}
k2[b(p,v2)− c2(p)],

where b(p,v) = λ p{g−v−v
′
(1−p)}

r .
We shall now determine the players’ best responses, using the same method as Keller, Rady

and Cripps (2005) or Das, Klein and Schmid (2020). Suppose player 2 is choosing the safe
arm in some neighbourhood of p ∈ (0,1). Then, player 1 chooses the risky arm at p if and only
if the belief p exceeds his single-agent threshold p̄1 =

rs1
(r+λ )g−λ s1

. By the same token, if player
1 is choosing the safe arm in a neighbourhood of p, player 2 will choose the risky arm as long
as the belief is greater than p̄2 := rs2

(r+λ )g−λ s2
. Since, s1 < s2, we have p̄1 < p̄2.

Now, suppose that player 2 is playing risky in some neighbourhood of p ∈ (0,1). Player 1’s
best response is to choose the risky arm if and only if b(p,v1)≥ c1(p), and hence v1 ≥ s1+c1(p),
in this neighbourhood. This means that given the other player is choosing the risky arm,
choosing the risky arm constitutes a best response for player 1 if and only if v1 lies above D1

in the (p,v)-plane, where the diagonal D1 is defined as

D1 := {(p,v) ∈ [0,1]×R+ : v = s1 + c1(p)} .

Similarly, for player 2, given that player 1 is choosing the risky arm, choosing the risky arm
constitutes a best response for player 2 if and only if v2 is above D2 in the (p,v)-plane,2 where

D2 := {(p,v) ∈ [0,1]×R+ : v = s2 + c2(p)} .

The players’ best-response diagonals are depicted in Figure 1.

From Figure 1, it can be observed that heterogeneity in safe-arm payoffs drives a wedge
between players’ best response lines. When s1 = s2, D1 and D2 coincide, while, when s2 = g,
the lines are the farthest apart from each other. The next proposition shows that if and only if
players are sufficiently heterogeneous, there exists an equilibrium where both players use cutoff
strategies; moreover, this equilibrium is unique in the class of equilibria where both players use
cutoff strategies.

Proposition 2 There exists a s∗2 ∈ (s1,g) such that there exists an equilibrium where both players
2In a slight abuse of notation, we shall in the following also write Di (i ∈ {1,2}) for the function D̃i : [0,1]→R

such that Di be the graph of D̃i, i.e., (p, D̃i(p)) ∈ Di for all p ∈ [0,1].
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Belief (p)

Value (v)

s1

s2

D1 : v = s1 +(s1 −gp)

s1
g

D2 : v = s2 +(s2 −gp)

s2
g0 1

Figure 1.

use cutoff strategies if and only if s2 ∈ [s∗2,g). In this equilibrium, player 1 chooses the risky
arm for all beliefs greater than p̄1 and chooses the safe arm otherwise. There exists a unique
p
′
2 ∈ (p̄1,1) such that player 2 chooses the risky arm for beliefs greater than p

′
2 and the safe arm

otherwise. This equilibrium is unique in the class of equilibria where both players use cutoff
strategies.

The formal proof of this proposition is given in Appendix (B). It can be seen from Figure
2 that, as players’ safe-arm payoffs diverge from each other, the range of beliefs over which
only player 2 can free-ride expands. Just as in Das, Klein and Schmid (2020), this difference
in free-riding opportunities allows for the existence of an equilibrium in cutoff strategies. The
equilibrium is depicted in Figure 2. The equilibrium in cutoff strategies exists only if the curve
v1 intersects D1 at a belief that is lower than the one at which the curve v2 intersects D2. This
is possible only if the players are sufficiently heterogeneous.

Thus, as in Das, Klein and Schmid (2020), sufficient heterogeneity, and hence sufficiently
different free-riding opportunities, allow for the existence of a cutoff equilibrium. A larger
difference in players’ safe-arm payoffs reduces the free-riding opportunities of player 1, while
expanding those of player 2.
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Figure 2.

5 Conclusion
In this article, we have considered a two-armed strategic bandit model where players face
different opportunity costs of experimentation in terms of safe-arm payoffs but an identical
rate of learning on the risky arm. We show that, as in Das, Klein and Schmid (2020), there
exists a Markov Perfect equilibrium in cut-off strategies if and only if players are sufficiently
asymmetric, i.e., the difference in safe-arm payoffs is high enough. Hence, we show that the
conclusion that a sufficient degree of asymmetry across players is necessary and sufficient for
the existence of an equilibrium in cutoff strategies continues to apply also when the asymmetry
pertains to the opportunity costs, rather than the yield, of information acquisition via the
risky arm. Furthermore, our equilibrium in cut-off strategies offers a simple explanation for the
observation that, in many instances, innovation will come from start-ups rather than established
companies, the idea being that start-ups have less to lose by focussing their resources and energy
on the pursuit of an innovation.
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APPENDIX

A Proof of Proposition 1
We prove the propoasition in two steps. First, we compute the planner’s payoff from the
proposed policy, and show that it is C1. Then, we show that this payoff and the associated
policy solve the Bellman equation.

First, consider the range p∈ [0, p∗1]. According to the conjectured solution, k∗1(p)= k∗2(p)= 0,
and v(p) = s1 + s2.

For p ∈ (p∗1, p∗2], according to the conjectured solution, k∗1(p) = 1 and k∗2(p) = 0. This implies
that v(p) satisfies the ODE

λ p(1− p)v′(p)+(r+λ p)v(p) = rs2 +(r+2λ )pg,

which is solved by

v(1,0)(p) = s2 +
(2λ + r)g−λ s2

λ + r
p+C10(1− p)

(
1− p

p

) r
λ
,
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where C10 =
1

1−p∗1

(
1−p∗1

p∗1

)− r
λ
[
s1 − (2λ+r)g−λ s2

λ+r p∗1
]
> 0 is a constant of integration, which is deter-

mined by value matching at p = p∗1; direct computation verifies that smooth pasting obtains as
well, i.e., that v(1,0)

′
(p∗1) = 0. As C10 > 0, v(1,0) is strictly convex and hence strictly increasing.

Moreover, v(1,0)(1)> 2s2 > s1 + s2 = v(1,0)(p∗1). Thus, p∗2 ∈ (p∗1,1) is well-defined.
For p > p∗2, both players use the risky arm according to the conjectured solution. Hence,

the planner’s value v(p) satisfies the ODE

2λ p(1− p)v′(p)+(r+2λ p)v(p) = 2(r+2λ )pg,

which is solved by

v(1,1)(p) = 2pg+C11(1− p)
(

1− p
p

) r
2λ
,

where C11 is a constant of integration determined by v(1,1)(p∗2) = 2s2 = v(1,0)(p∗2). It is immediate
to verify from the appertaining ODEs that this implies that v(1,1)

′
(p∗2)= v(1,0)

′
(p∗2) (smooth past-

ing), and that therefore v is strictly increasing and convex on (p∗2,1) as well. As is immediate
from the expression for v(1,1),C11 > 0 if and only if p∗2 <

s2
g . To show that indeed p∗2 <

s2
g , it is suffi-

cient to note that v(1,0)
(

s2
g

)
> 2s2, which is easily verified as v(1,0)

(
s2
g

)
−C10

(
1− s2

g

)(
g−s2

s2

) r
λ
>

2s2.
It remains to show that the proposed policy satisfies the planner’s Bellman equation. First,

on [0, p∗1], v(p) = s1 + s2, and therefore B(p,v) = λ
r p(2g− s1 − s2)≤ si − pg = ci(p), as p ≤ p∗1.

On (p∗1, p∗2), B(p,v) = v(p)− pg− s2, so that B(p,v)≥ c1(p) if and only if v(p)≥ s1+ s2, and
B(p,v)≤ c2(p) if and only if v(p)≤ 2s2; both inequalities hold by the monotonicity of v.

On (p∗2,1), B(p,v) = v(p)
2 − pg, and thus B(p,v) ≥ c2(p) ≥ c1(p) if and only if v(p) ≥ 2s2,

which holds by the monotonicity of v.

B Proof of Proposition 2
The same argument as in Das, Klein and Schmid (2020), Proposition 2, establishes that neither
player will play risky on [0, p̄1] in any equilibrium.

In any equilibrium, for beliefs just above p̄1, only player 1 can experiment with the risky
arm, as p̄1 < p̄2 and the point (p̄1,si) lies below both diagonals D1 and D2 in (p,v)-space. This
implies that, for beliefs just above p̄1, the payoff of player 1 follows the ODE

λ p(1− p)v′(p)+(r+λ p)v(p) = (r+λ )pg,
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which is solved by

v(1,0)1 (p) = gp+C(1,0)
1 (1− p)

(
1− p

p

) r
λ
.

The integration constant C(1,0)
1 is determined by the value-matching condition v(1,0)1 (p̄1) = s1.

On an open interval of beliefs in which only player 1 is experimenting, player 2’s payoff
satisfies the ODE

λ p(1− p)v′(p)+(r+λ p)v(p) = rs2 +λ pg,

which is solved by

v(1,0)2 (p) = s2 +
λ

λ + r
(g− s2)p+C(1,0)

2 (1− p)
(

1− p
p

) r
λ
.

The integration constant C(1,0)
2 is determined by the value-matching condition v(1,0)2 (p̄1) = s2.

First, we show that there exists a unique p
′
1 ∈ (p̄1,1) such that v(1,0)1 (p

′
1) = D1(p

′
1). Indeed,

as p̄1g < s1, C(1,0)
1 > 0, and v(1,0)1 is strictly convex. It is easy to check that v(1,0)

′

1 (p̄1) = 0, i.e.,
smooth pasting holds at p̄1. Therefore, v(1,0)1 is strictly increasing on (p̄1,1). The diagonal
D1, on the other hand, is monotonically decreasing in p. Moreover, since p̄1 < s1

g , we have
s1 = v(1,0)1 (p̄1) < D1(p̄1), and g = v(1,0)1 (1) > D1(1) = 2s1 − g. Hence, there exists a unique
p
′
1 ∈ (p̄1,1) such that v(1,0)1 (p

′
1) = D1(p

′
1). Note that since both v(1,0)1 and D1 are independent

of s2, the threshold p
′
1 is independent of s2.

Next, we will argue that there exists a unique p
′
2 ∈ (p̄1,1) such that v(1,0)2 (p

′
2) = D2(p

′
2).

As s2 +
λ

λ+r (g − s2)p̄1 > s2, C(1,0)
2 < 0, and v(1,0)2 is strictly concave; it is moreover strictly

increasing. The diagonal D2 is monotonically decreasing in p. Moreover, since p̄1 < s1
g < s2

g ,
we have s2 = v(1,0)2 (p̄1)< D2(p̄1), and λg+rs2

λ+r = v(1,0)2 (1)> D2(1) = 2s2 −g. Thus, there exists a
unique p

′
2 ∈ (p̄1,1) such that v(1,0)2 (p

′
2) = D2(p

′
2).

By the properties of the best-response correspondences, an equilibrium in cutoff strategies
can exist only if p

′
2 ≥ p

′
1. When s2 ↑ g , p

′
2 → 1. Moreover, v(1,0)2 (p) ≈ s2 for s2 close to g.

Since p
′
1 ∈ (p̄1,1) is independent of s2, p

′
2 ≈ 1 > p

′
1 for s2 close enough to g. For the case

s2 = s1, we know by Keller, Rady and Cripps (2005) that p
′
2 < p

′
1. As s2 increases, the

line D2 shifts upward and to the right, while v(1,0)2 , a strictly increasing function satisfying
v(1,0)2 (p̄1) = s2 <

λg+rs2
λ+r = v(1,0)2 (1) becomes flatter. (Recall that p̄1 is independent of s2.) Hence,

p
′
2 increases as s2 increases. Thus, there exists a unique s∗2 ∈ (s1,g) such that, for all s2 ∈ [s∗2,g),

p
′
2 ≥ p

′
1.

We have shown so far that s2 ≥ s∗2 is necessary for the existence of an equilibrium in cutoff
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strategies, and that the only candidate for an equilibrium in cutoff strategies is that in which
player i applies the cutoff p

′
i. It remains to show that these cutoffs indeed define an equilibrium

whenever s2 ≥ s∗2, i.e., that k1 = 1
(p′1,1]

and k2 = 1
(p′2,1]

are mutually best responses. For beliefs
p ∈ [0, p

′
2], this is so by construction. Let us therefore turn to the belief range (p

′
2,1].

In this range, the proposed strategies imply that player i’s value function follows the ODE

2λ p(1− p)v′i(p)+(r+2λ p)vi(p) = (r+2λ )pg,

which is solved by

v(1,1)i (p) = pg+C(1,1)
i (1− p)

(
1− p

p

) r
2λ
,

where C(1,1)
i is a constant of integration determined by v(1,1)i (p

′
2) = v(1,0)i (p

′
2).

To show that player 1 plays a best response in this range, it suffices to show that v(1,1)1 ≥ D1

throughout this range. As p
′
2 ≥ p

′
1, the monotonicity of v(1,0)1 and D1 imply that v(1,0)1 (p

′
2) =

v(1,1)1 (p
′
2) ≥ D1(p

′
2). Now suppose to the contrary that there exists some p̂ ∈ [p

′
2,1) such

that v(1,1)1 (p̂) = D1(p̂) and v(1,1)
′

1 (p̂) ≤ −g = D′
1(p̂). By the ODE for v(1,1)1 , this implies p̂ ≤

rs1
(2λ+r)(g−s1)+rs1

< p̄1 < p
′
1 ≤ p

′
2 ≤ p̂, a contradiction. Thus, v(1,1)1 (p) ≥ D1(p) for all p ∈ [p

′
2,1],

and player 1 is playing a best response in this range as well.
Now let us turn to player 2. The payoff function v(1,1)2 is convex if and only if C(1,1)

2 ≥ 0, i.e., if
and only if v(1,1)2 (p

′
2) = v(1,0)2 (p

′
2) = D2(p

′
2) = 2s2− p

′
2g ≥ p

′
2g, which is equivalent to p

′
2 ≤

s2
g ; this

holds because v(1,0)2 is strictly increasing, D2 is strictly decreasing, s2 = v(1,0)2 (p̄1) = D2(
s2
g ), and

p̄1 <
s2
g . Thus, v(1,1)2 is convex. Direct computation from the appertaining ODEs furthermore

shows smooth pasting at p
′
2, i.e., v(1,1)

′

2 (p
′
2) = v(1,0)

′

2 (p
′
2) > 0. We can thus conclude that v(1,1)2

is monotonically increasing on (p
′
2,1), and therefore v(1,1)2 (p) > D2(p) for all p ∈ (p

′
2,1], as D2

is monotonically decreasing. This shows that player 2 is playing a best response on [p
′
2,1] as

well, thus concluding the proof.
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