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Abstract

We analyse a model of two firms that are engaged in a patent race. Firms have to choose in

continuous time between an established and an innovative method of pursuing a decisive break-

through. They share a common belief about the likelihood of the innovative method being good.

The unique Markov perfect equilibrium coincides with the cartel solution if and only if firms are

symmetric in their abilities of leveraging a good innovative method or there is no patent protec-

tion. Otherwise, equilibrium will entail excessive clustering of efforts in the innovative method, as

compared to the cartel benchmark, for any level of patent protection. We show that the expected

time to a breakthrough is minimised at an interior level of patent protection, providing a novel

possible explanation for the decrease in R&D productivity sometimes associated with a greater

concentration of research efforts in riskier areas and stronger patent protections.
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1 Introduction

Innovative methods are an important driver of success in many industries. Consider the pharmaceuti-
cal industry and its quest for a better way of treating Alzheimer’s disease, for instance. Alzheimer’s
is characterised by both a decrease in acetylcholine (neurotransmitter) levels in the brain and the ac-
cumulation of β -amyloid plaques. The current method of treatment is based on the widely marketed
drug Donepezil, which increases acetylcholine levels but which can only slow down the progres-
sion of the disease without curing it. Research efforts over the past decade, by contrast, have been
focussed on finding a drug counter-acting the accumulation of β -amyloid plaques. However, as inno-
vative approaches toward this goal have failed to lead to success, researchers are currently exploring
the possibility of designing a drug that would combat the accumulation of β -amyloid plaques via an
increase in neurotransmitter levels.1 Indeed, there is some evidence that Donepezil has a beneficial
effect on the level of β -amyloid plaques.2

When firms search for success using an innovative method, their competition entails a positive
informational externality, besides the payoff externality that is typical for patent races. The importance
of the latter depends on the level of patent protection afforded by the legal system. Concurrently, the
fact that a competitor has been unsuccessfully looking for a breakthrough using a particular method
is useful information to the firm, as it will inform its optimal future R&D choices. In our Alzheimer’s
example, failed clinical trials by a pharmaceutical company indeed provide crucial insights that also
help shape competitors’ future research efforts.

In this paper, we study process innovation3 in a setting in which two firms are engaged in a patent
race and their research choices are observable, using a variant of the two-armed exponential-bandits

framework of Keller, Rady and Cripps (2005). In our baseline model, we take the scale of R&D as
given, analysing the problem of allocating a given resource flow among two competing methods of
R&D.4 More specifically, there is an established work method either firm can use, which leads to a
success at the first jumping time of a Poisson process with a known rate. As Donepezil is already
known to have an effect on β -amyloid plaques, this would correspond to the search for a drug that
seeks to fight the concentration of β -amyloid plaques by increasing neurotransmitter levels. Both
firms also have access to an innovative work method that is either good or bad. Whether it is good
or bad is initially unknown to the firms, who share a common initial belief about it. If the innovative
method is good, it leads to a success at a faster rate than the established method. We allow for
one firm to be more efficient than the other in its exploration of the innovative method, achieving a

1See Moss (2018).
2See Dong et al. (2009).
3While the phrase process innovation is often used to refer to innovations that decrease the cost of production of a

certain good, we here use the term to signify the use of a new method to achieve a certain goal.
4While we are abstracting from R&D costs in the baseline model, we discuss an extension with costly experimentation

in Section 6.
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success more quickly conditionally on the method being good. If the innovative method is bad, it
never yields a success. The first success ends the game, yielding a payoff that is shared between the
firms as a function of the level of patent protection that prevails. Both firms discount future payoffs at
a common rate.

The innovative method is good for one firm if and only if it is good for the other firm as well. As
either firm’s actions are perfectly publicly observable, the R&D race between the two firms involves
a positive informational externality. Indeed, the longer the innovative method is unsuccessfully tried
by either firm, the more pessimistic both firms become about its quality. There is, however, also a
(negative) payoff externality between the firms, the strength of which depends on the level of patent
protection afforded to the winner of the R&D race.

We first analyse the problem of a cartel that endeavours to maximise the aggregate expected dis-
counted payoff. In the optimal cartel solution, the stronger firm experiments with the innovative
method if and only if the firms’ belief that the innovative method is good exceeds its myopic cutoff;
i.e., if and only if the instantaneous expected arrival rate of a success is higher with the innovative
method than the established one for the stronger firm. If the other firm is equally productive with the
innovative method, it behaves exactly as the first firm in the cartel solution. Otherwise, the less pro-
ductive firm anticipates that the more productive firm will continue exploring the innovative method
until its myopic cutoff is reached. At its own myopic cutoff, the less productive firm thus reasons that,
if it goes on experimenting a bit longer, the more productive firm’s myopic cutoff is reached sooner
(conditionally on no success); put differently, the amount of time the productive firm will henceforth
spend on exploring the innovative method is reduced. Based on the current belief, this means that the
overall likelihood of a success by the more productive firm decreases. Since, at the less productive
firm’s myopic cutoff, its own expected breakthrough rate is exactly equalized between the two meth-
ods, this explains why the cartel will want to substitute future experimentation by the stronger firm
for current experimentation by the weaker firm (intertemporal substitution effect); it will therefore
apply a cutoff more optimistic than its myopic cutoff to the less productive firm. As the expected time
to a breakthrough is minimised when both firms switch methods at their respective myopic cutoffs,
this implies that a profit-maximising cartel will delay the expected breakthrough time by making the
weaker firm give up on the innovative method prematurely.

We go on to show that, for any level of patent protection, our game admits a unique Markov perfect

equilibrium, with the firms’ common belief that the innovative method is good as the state variable.
In contrast to the case of pure informational externalities (see Keller, Rady and Cripps (2005)), our
unique equilibrium is always in cutoff strategies. If and only if both firms are equally productive with
a good innovative work method or there is no patent protection whatsoever, the unique Markov perfect
equilibrium coincides with the cartel solution. In the case of symmetric firms, it also minimises the
expected time to a breakthrough.
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By contrast, if one of the firms happens to be more productive with a good innovative method,
e.g., because it has a bigger or better research or production department,5 the unique Markov perfect
equilibrium leads to excessive clustering of innovative efforts, as compared to the cartel solution. The
stronger firm always acts as in the cartel benchmark, being the last to give up experimenting with the
innovative method in equilibrium. The less productive firm, by contrast, trades off two effects: on
the one hand, because of discounting, it wishes for a breakthrough to occur as quickly as possible,
while, on the other hand, it would prefer that it was the one achieving the breakthrough, rather than
its competitor. Which of these effects prevails at its myopic belief threshold depends on the strength
of the patent protection afforded to the first innovator. If patent protection, and thus the firms’ payoff
rivalry, is strong, the above reasoning explains why the less productive firm will endeavour to “eat up”
some of the stronger firm’s comparative advantage, by extending experimentation below its myopic
cutoff, thereby reducing the expected time the stronger firm will spend on the innovative method.
This implies that, for strong patent protections, research productivity, as measured by the expected
time to a breakthrough, is lowered because the weaker firm extends research on the innovative method
beyond its myopic threshold.

For weaker levels of patent protection, by contrast, the weaker firm will stop experimentation at a
threshold exceeding its myopic cutoff, while still extending it beyond the cartel threshold. Thus, while
the effect is mitigated as compared to the cartel, research productivity is still suboptimal because the
weaker firm gives up on the innovative method too quickly. There is a unique, interior, level of patent
protection that makes the weaker firm behave in equilibrium exactly as though it were myopic; this
level of patent protection minimises the expected time to a breakthrough.

In summary, the cartel asks the weaker firm to step aside somewhat for the stronger firm in the
cooperative solution. In equilibrium, by contrast, the weaker firm always stands aside less. If patent
protection is strong, it is willing to incur a reduction in its own breakthrough rate by extending ex-
perimentation below its myopic threshold, in order to discourage the stronger firm by its hapless
experimentation. If patent protection is weak, the weaker firm is incurring a reduction in its own
breakthrough rate by switching to the established method at a threshold above its myopic cutoff, in
order to encourage the stronger firm to spend more time exploring the innovative method.

In Section 6, we show that the intertemporal-substitution effect we identify in our baseline model
is robust to various extensions, which make our setup more realistic. Thus, we explicitly introduce a
post-innovation product market (Subsection 6.1), R&D costs (Subsections 6.2 and 6.3), and allow for
a breakthrough via the innovative method to be more valuable than a breakthrough that is achieved via
the established method (Subsection 6.4). While our qualitative results are unchanged by the explicit
introduction of the product market and small research cost, larger research costs give rise to familiar
trade-offs: If R&D costs are in the form of flow costs (Subsection 6.2), our equilibrium requires

5We assume that the established method has been around long enough that both firms are equally productive with it.
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patent protection to be strong enough for the firm to be willing to incur the expenditure. If, however,
research costs are in the form of an upfront fixed cost (Subsection 6.3), patent protection has to be
weak enough, for the spoils from a success by the stronger firm to be important enough, to entice the
weaker firm to enter the fray. If a success by the innovative method is more valuable (Subsection 6.4),
the existence of our equilibrium requires firms to be very asymmetric.

Pfizer has pulled out from Alzheimer’s drug research in January 2018 while its competitors keep
pursuing it, which suggests that heterogeneity among firms is indeed a feature of real-world R&D
races. Analysing a large database that contains information on R&D projects for more than 28,000
cases, Pammoli, Magazzini and Riccaboni (2011) conclude that, in the period 1990-2010, there has
been a decline in R&D productivity in pharmaceuticals, which cannot be fully explained by the mar-
ket forces of demand and competition. Simultaneously, they observe an increasing concentration of
R&D investments in relatively more risky areas. Incidentally, this time period coincides with the
implementation of the Agreement on Trade Related Intellectual Property Rights (TRIPS), which cov-
ers pharmaceutical products or processes invented since January 1, 1995. This agreement obliges all
WTO members to afford patent protections for pharmaceutical inventions. Previously to the TRIPS
agreement, copies of medicines that were patent-protected elsewhere were often widely available
in many developing countries.6 TRIPS has thus significantly strengthened patent protections in the
pharmaceutical sector. While Aghion et al. (2005) show an inverted U-relationship between com-
petition and innovation, their mechanism, which relies on the differential effect of competition on
pre-innovation and post-innovation rents, does not account for different levels of project riskiness. To
the best of our knowledge, we are the first to propose an explanation for the combination of a decline
in R&D productivity, a strengthening of the patent regime and an increasing concentration of research
efforts in riskier areas.

A decrease in pharmaceutical R&D productivity connected with stronger patent protections has
been noted elsewhere. Indeed, studying pharmaceutical patent protection for the time period 1978–
2002, Qian (2007) writes that “there appears to be an optimal level of intellectual property rights
regulation above which further enhancement reduces innovative activities” (see his Abstract). He
goes on to note: “National patent laws would also induce domestic investors to switch from imitative
activities to innovative ones” (see Qian (2007), p. 437). Sakakibara and Branstetter (2001) likewise
find no evidence of an increase in R&D output subsequent to a strengthening of patent projections
in Japan in 1988.7 Galasso and Schankerman (2015) and Sampat and Williams (2019) analyze the
impact of patent protections on follow-on innovations. While the former show that the impact depends

6See e.g. Boulet et al. (2000).
7They find no evidence of an increase in R&D expenditure either. This is consistent with our model if we interpret

investment in the established method as R&D expenditure as well. Bessen and Hunt (2004) also find that R&D intensity
in the US software industry decreased subsequently to an enhancement of patent protections for computer programs that
occurred in the US during the 1980s and 1990s by virtue of a gradual evolution of the appertaining jurisprudence. Our
baseline model only pertains to the choice of methodology in R&D races, rather than the level of R&D investments.
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on the field of activity, the latter conclude that, on average, patents on genes have had no important
effects on follow-on innovations. Our model formalises the idea that, in an R&D race with observable
actions, excessive clustering in riskier innovative efforts may be caused by strong patent protections.

The rest of the paper is organised as follows. Section 2 reviews the relevant literature, Section 3
describes the environment, while Sections 4 and 5 describe the analysis with symmetric and asymmet-
ric players respectively. Section 6 explores extensions to our baseline model, and Section 7 concludes.
The Appendix contains the derivation of the payoff functions and formal proofs of our results.

2 Related Literature

Our paper contributes to the literature exploring the link between patent strength and R&D invest-
ment. We find that there is a non-trivial trade-off due to the presence of positive informational, as
well as negative payoff, externalities, and that the optimal patent strength is therefore interior. The
idea that patent protection ought not to be too strong if subsequent innovators use previous discoveries
in their own innovation process is present both in both Bessen and Maskin (2009) and Gangopadhyay
and Mondal (2012). Chen et al. (2014) notes that strong patent protections favour incumbents, and
therefore spur (depress) challengers’ investments in innovation by increasing (decreasing) future (cur-
rent) profits; the welfare implications of this observation depend on the discount factor. O’Donoghue
et al. (1998) considers patents that are defined by their expiration date as well as by its lagging and
leading breadth, with the former providing protection from imitation, and the latter from improved in-
novations. They show that if there is no leading breadth, the equilibrium rate of innovation is too low.
For patents with infinite leading breadth, the optimal investment rate is achieved, or even exceeded, as
patent duration goes to infinity. None of these papers focuses on the effect of patent strength on inno-
vation when there are different research avenues, which is a central feature of our model. The closest
paper with this feature is Chen et al. (2018). In their framework, innovation can be achieved either
through a safe or a risky method. Innovation by the safe method always leads to an improvement
that is higher than the patentability threshold; innovation by the risky method leads to a stochastic
improvement, which may or may not exceed the patentability standard, which is chosen by the gov-
ernment. They show that weak patents, i.e., a low patentability standard, distort research towards the
risky option. While there is no learning over time about the stochastic process governing the risky
research avenue in their model, we incorporate learning over time about the stochastic process gov-
erning the risky, innovative, avenue, and show that strong patents distort research in the direction of
the innovative method.

Our model builds on the literature on strategic experimentation with bandits, started by Bolton and
Harris (1999). In particular, we use a variant of the exponential model of Keller, Rady and Cripps
(2005), into which Das, Klein and Schmid (2019) has introduced asymmetric players. Besanko
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and Wu (2013) has introduced payoff externalities into the model, applying it to an R&D race.
Chatterjee and Evans (2004) is the first paper to analyse project choice in a dynamic winner-takes-all
competition.

A series of papers has analysed the problem of incentivizing a single agent to engage in innovation,
among them Chen and Ishida (2018) and Klein (2016) in continuous time, and Manso (2011) in
a two-period model. Chen et al. (2020) analyses the signalling problem of an agent whose payoff
depends on the market’s belief about his type and who needs to decide when irreversibly to stop
pursuing a risky project, which can be either good or bad. In their model, agents differ in both their
ability to identify, and their ability to implement, a good project.

Halac, Kartik and Liu (2016) characterises sharing and disclosure rules in contests that maximise
the probability of an innovation, the feasibility of which is ex-ante uncertain. Bimpikis, Ehsani and
Mostagir (2019) considers two-stage contests and analyses the mechanisms for disclosure of a first-
stage breakthrough a designer will want to commit to. In our baseline model, we, by contrast, abstract
from both private information and the question of effort provision to focus on firms’ choice of method;
moreover, a breakthrough consists of a single successful stage.

Our paper also contributes to the relatively less explored area of choice of methodological ap-
proach in R&D races,8 a question analysed, amongst others, by Bhattacharya and Mookerjee (1986),
Klette and de Meza (1986), Dasgupta and Maskin (1987), Choi and Gerlach (2014), Letina (2016),
and Brian and Lemus (2017).

3 The Environment

Two firms are simultaneously trying to achieve a breakthrough in continuous time. The first break-
through yields a payoff of α to the firm accomplishing it, and (1−α) to the competing firm, where
α ∈ [1

2 ,1]. We interpret the parameter α as measuring the strength of patent protection afforded to
the firm achieving the first breakthrough. Indeed, α > 1

2 implies that the firm accomplishing the first
breakthrough gets a premium, with α = 1 corresponding to the winner-takes-all case; i.e., the first
firm to innovate appropriates all the rent. There are two work methods the firms can adopt to achieve
the breakthrough. One method, method S, is established (safe) in that it yields a breakthrough at the
first jumping time of a Poisson process with known intensity λ0 > 0. The other method, method R, is
innovative (risky), in that it is not initially known if it is good or bad, its quality being the same for
both firms. If it is good, it produces a breakthrough for firm i ∈ {1,2}9 at the first jumping time of
a Poisson process with intensity λi > λ0. If it is bad, it never yields a breakthrough for either firm.

8As mentioned above, our baseline model abstracts from the choice of the scale of R&D, to focus our analysis on
the allocation of a given resource among the various methods of R&D. The issue of choosing the scale of R&D is well
documented in the literature (see Lee and Wilde (1980); Reinganum (1982)).

9Throughout the paper, we write “firm i” for either of the two firms, and “firm j” for the other firm.
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We assume λ1 ≥ λ2; i.e., conditionally on the innovative method being good, firm 1 will achieve the
breakthrough weakly faster in expectation. For the rest of the paper, the established method will be
denoted S (for safe) and the innovative method will be denoted R (for risky). Both firms discount
the future using the common discount rate r > 0. Firms do not incur any direct costs for adopting
either method. They share a common prior belief p0 ∈ (0,1) that method R is good. Firms’ choices of
methods are perfectly publicly observable. This implies that, at any time point, firms will also share a
common posterior belief.

Evolution of beliefs: Let ki,t be an indicator variable for firm i adopting the innovative method
at instant t. Fix some time t by which no success has arrived yet, and some ∆ > 0. If no success has
arrived via the innovative method by time t +∆, the common posterior belief pt+∆ satisfies Bayes’
rule, i.e.,

pt+∆ =
pte−λ1

∫ t+∆
t k1,τ dτ−λ2

∫ t+∆
t k2,τ dτ

pte−λ1
∫ t+∆

t k1,τ dτ−λ2
∫ t+∆

t k2,τ dτ +1− pt

.

Equivalently, we can write the evolution of the belief in differential form as

ṗt =
d pt

d∆
|∆=0 =−(k1,tλ1 + k2,tλ2)pt(1− pt) a.s.

Welfare

We have motivated our paper by R&D in the pharmaceutical sector. It thus seems reasonable to as-
sume that a social planner may want to speed up as much as possible the arrival time of a breakthrough,
such as a cure for Alzheimer’s disease. We therefore adopt the social welfare function

W = e−rτT S (1)

where T S is the post-innovation total surplus (i.e., the sum of consumer and producer surplus), and
τ denotes the expected time to first breakthrough. In our baseline specification, T S is independent of
the level of patent protection α and hence to maximise W , the social planner should minimise τ .

In contrast, we define the cartel’s problem as that of seeking to maximise the sum of the firms’
expected time-discounted payoffs. As we will see below, unless firms are symmetric, the solution to
the cartel’s problem does not coincide with the social-welfare optimum.
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4 Symmetric Firms

4.1 The cartel’s problem

The cartel’s objective is to maximise the sum of the firms’ payoffs. It thus seeks to choose a process
{(k1,t ,k2,t)}t≥0 that is measurable with respect to its information, so as to maximise

E
[∫ ∞

0
e−rt−λ0

∫ t
0(2−k1,τ−k2,τ )dτ−λ1

∫ t
0 pτ (k1,τ+k2,τ )dτ ((2− k1,t − k2,t)λ0 + ptλ1(k1,t + k2,t)) dt

]
(2)

subject to the law of motion of beliefs

d pt =−λ1(k1,t + k2,t)pt(1− pt)dt for a.a. t . (3)

Without loss of generality, we can restrict the cartel to Markov strategies (k1,t ,k2,t) = (k1,k2)(pt) with
the posterior belief pt as the state variable; furthermore, only k = k1+k2, i.e., the number of firms the
cartel assigns to method R,10 matters in the cartel’s objective. This implies k(pt) ∈ {0,1,2}. By the
Principle of Optimality, the maximised objective (2) given p0 = p, which we denote by v(p), satisfies
the Bellman equation

v(p)= max
(k1,k2)

{
[(2− k1 − k2)λ0 +(k1 + k2)λ1 p]dt + e−(r+λ0(2−k1−k2)+pλ1(k1+k2))dtE [v(p+d p)|p,(k1,k2),C ]

}
,

where we write C for the event that there is not an instantaneous breakthrough, and that hence
the game continues. This event occurs with subjective probability e−(λ0(2−k1−k2)+pλ1(k1+k2))dt =

1− [λ0(2− k1 − k2)+ pλ1(k1 + k2)]dt +o(dt). Using furthermore that e−rdt = 1− rdt +o(dt) gives
us, after some algebraic manipulations,

rv = max
k∈{0,1,2}

{2λ0(1− v)+ k[λ1 p
(
1− v− (1− p)v′

)
−λ0 (1− v)]}.

The expression 2λ0(1−v) denotes the expected flow payoff the cartel can guarantee itself by assigning
both firms to method S. The expression λ1 p(1− v− (1− p)v′)−λ0 (1− v) reflects the premium the
cartel gets by assigning an additional firm to method R. Note that, by linearity, even if firms’ efforts
were divisible, it would be without loss for the cartel to choose {k(pt)}t≥0 with k(pt) ∈ {0,2} for
all t ≥ 0. The cartel’s solution is described in the following proposition. It shows that maximisation
of expected time-discounted joint profits requires players to choose the myopically optimal method.
To state the proposition, we use the function µ(p) defined in Appendix A. In the symmetric case,
µ(p) = (1− p)

(1−p
p

) r
2λ1 .

10We suppress the arguments whenever this is convenient.
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Proposition 1 The cartel’s optimal policy k∗(p) is given by

k∗(p) =

{
2 if p ∈ (p∗1,1]
0 if p ∈ [0, p∗1]

,

where p∗1 =
λ0
λ1

. The cartel’s value function is given by

v(p) =

{ 2λ1 p
r+2λ1

+ 4λ0(λ1−λ0)µ(p)
(r+2λ0)(r+2λ1)µ(p∗1)

if p ∈ (p∗1,1]
2λ0

r+2λ0
if p ∈ [0, p∗1]

Proof. Proof is by a standard verification argument. Please refer to Appendix B for details, and
Appendix A.1 for the ODE satisfied by the cartel’s value.

Note that, in the symmetric case, the cartel’s policy minimises the expected time to a breakthrough.
In the next subsection, we analyse the non-cooperative game between the firms.

4.2 Non-cooperative game

We restrict ourselves to Markov perfect equilibria, with the firms’ common belief as the state variable.
A Markov strategy for player i (i = 1,2) is defined as a left-continuous11 function ki : [0,1]→{0,1},
p 7→ ki(p). Suppose that firm j follows the Markov strategy k j. Firm i’s objective is to choose {ki,t}t≥0

so as to maximise

E
[∫ ∞

0
ζ (t)

[
((1− ki,t)λ0 + ki,t ptλ1)α +((1− k j(pt))λ0 + k j(pt)ptλ1)(1−α)

]
dt
]
,

where ζ (t) := e−rt−λ0
∫ t

0(2−k j(pτ )−ki,τ )dτ−λ1
∫ t

0 pτ (k j(pτ )+ki,τ ), subject to the law of motion of beliefs (3).
Clearly, firm i has a best response ki that is a Markov strategy as well. By the Principle of Optimality,
this best response satisfies the Bellman equation, where we write vi for firm i’s maximised objective:

vi(p) = max
ki∈{0,1}

{
((1− ki)λ0 + kiλ1 p)α +((1− k j(p))λ0 + k j(p)λ1 p)(1−α)

+e−(r+λ0(2−k j(p)−ki)+λ1 p(k j(p)+ki))dtE [vi(p+d p)|ki, p,C ]
}
.

11We impose left-continuity in order to guarantee that there exists a time path of beliefs {pt}t≥0 satisfying the integral
equation given by Bayes’ rule,

pt =
p0e−λ1

∫ t
0 k1,τ dτ−λ2

∫ t
0 k2,τ dτ

p0e−λ1
∫ t

0 k1,τ dτ−λ2
∫ t

0 k2,τ dτ +1− p0
, (4)

for any initial belief p0 ∈ (0,1). Indeed, consider, e.g., k1 = k2 = 1[p̂,1], for some p̂ ∈ (0,1), as a hypothetical Markov
strategy. Then, in the absence of the left continuity assumption, there would be no time path of beliefs {pt}t≥0, with
p0 = p̂, satisfying (4) for a.a. t ≥ 0. A detailed discussion of this issue can be found in Appendix B.1 of Klein and Rady
(2011).
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Figure 1: Symmetric Firms

Applying the same approximations as above gives us

rvi = max
ki∈{0,1}

λ0[1−2vi]+ ki{λ1 p[α − vi − (1− p)v
′
i]−λ0[α − vi]}

+ k j{λ1 p[(1−α)− vi − (1− p)v
′
i]−λ0[(1−α)− vi]}. (5)

From this Bellman equation, we can derive the best responses of the firms, using the ODEs exhibited
in Appendix A.1.

Suppose firm j ̸= i is adopting method R at the belief p ∈ (0,1). By left-continuity, there is a
left-neighbourhood of p in which j is adopting R. If i best-responds to j by adopting R in some subset
of this left-neighbourhood, its value function satisfies

vi ≥
2λ0α +λ1 p(1−2α)

r+2λ0

on this subset. If the inequality is strict, adopting R is i’s unique best response. By the same token, if
the other firm is adopting the method S in some left-neighbourhood of p, then, if firm i best-responds
by adopting the method R, its value function satisfies

vi ≥
λ0

r+2λ0
;

if the inequality is strict, adopting R is i’s unique best response.
These simple observations allow us to prove the following result, which shows that the unique

MPE in this setting coincides with the cartel’s solution. This situation is depicted in Figure 1.

Proposition 2 If firms are symmetric, the unique MPE coincides with the cartel’s solution (and thus

minimises the expected time to a breakthrough), for any level of patent protection α ∈ [1
2 ,1].

Proof. See Appendix C.
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5 Asymmetric Firms

In this section, we analyse the situation of firms that differ in their abilities to achieve a success by a
good innovative method, i.e., λ1 > λ2 > λ0. We again first analyse the cartel’s problem, which seeks
to maximise the firms’ aggregate discounted payoffs.

5.1 The Cartel’s Problem

The cartel chooses a measurable process {(k1,t ,k2,t)}t≥0 so as to maximise the sum of the firms’
expected payoffs,

E
[∫ ∞

0
e−rt−λ0

∫ t
0(2−k1,τ−k2,τ )dτ−

∫ t
0 pτ (λ1k1,τ+λ2k2,τ )dτ ((2− k1,t − k2,t)λ0 + pt(λ1k1,t +λ2k2,t)) dt

]
,

subject to the law of motion of beliefs

d pt =−(k1,tλ1 + k2,tλ2)pt(1− pt)dt for a.a. t . (6)

We can again restrict the cartel to Markov strategies kt =(kt
1,k

t
2) with the posterior belief pt as the state

variable, where we write kt
i = 1(0) (i = 1,2) if the cartel assigns firm i to method R (S). Analogous

steps as above show that the value function of the cartel v(p) satisfies

rv = max
(k1,k2)∈{0,1}2

2λ0(1− v)+ k1
{

λ1 p[1− v− (1− p)v′]−λ0[1− v]
}

+ k2
{

λ2 p[1− v− (1− p)v′]−λ0[1− v]
}

(7)

The expression 2λ0(1− v) is the expected flow payoff the cartel can guarantee itself by assigning
both firms to method S. On the other hand, λi p[1− v− v′(1− p)]−λ0(1− v) reflects the premium
the cartel gets by assigning firm i to method R. By linearity, it would be without loss for the car-
tel to choose {ki(pt)}t≥0 (i = 1,2) with ki(pt) ∈ {0,1}, even if firms’ efforts were divisible. The
following proposition describes the cartel’s solution. It shows that maximisation of joint expected
time-discounted payoffs requires the cartel to choose the myopically optimal method for firm 1, while
assigning firm 2 to method S at some beliefs above its myopically optimal threshold. To state the
theorem, we use the strictly decreasing and strictly convex functions µ(p) = (1− p)(1−p

p )
r

λ1+λ2 and

µ1(p) = (1− p)(1−p
p )

r+λ0
λ1 .

Proposition 3 The cartel’s optimal solution is characterised by thresholds p∗1 =
λ0
λ1

and p∗2 ∈ (λ0
λ2
,1),

such that, for p ∈ (p∗2,1] (p ∈ (0, p∗1]), both firms are assigned to method R (S). For p ∈ (p∗1, p∗2], firm

12



1 is assigned to method R and firm 2 is assigned to method S. The cartel’s value function is given by

v(p) =


λ1+λ2

r+λ1+λ2
p+Crrµ(p) ≡ v̌rr(p) if p ∈ (p∗2,1],

λ0
r+λ0

+ rλ1
(r+λ0)(r+λ0+λ1)

p+Crsµ1(p) ≡ v̌rs(p) if p ∈ (p∗1, p∗2],
2λ0

r+2λ0
if p ∈ [0, p∗1].

(8)

where p∗2 ∈ (λ0
λ2
,1) satisfies

v̌rr(p∗2) = v̌rs(p∗2) =
λ0(λ1 +λ2)

rλ2 +λ0(λ1 +λ2)
.

Crs and Crr are constants of integration with Crs =
rλ0(λ1−λ0)

(r+λ0)(r+2λ0)(r+λ0+λ1)µ1(p∗1)
> 0, and Crr > 0

is determined from v̌rr(p∗2) = v̌rs(p∗2).

Proof. Proof is by a standard verification argument. Please refer to Appendix D for details, and
Appendix A.2 for the ODEs satisfied by the cartel’s value function.

The cartel’s value function v(p) is of class C1, (strictly) increasing and (strictly) convex (on
(p∗1,1)). At the optimum, firm 2 switches from method R to method S as soon as the belief drops
below the threshold p∗2 > λ0

λ2
. By contrast, if firm 2 were the only firm around, then it would have

optimally switched to method S at the belief λ0
λ2

. In the presence of firm 1, however, firm 2 optimally
switches at a belief higher than its myopic threshold, while firm 1 optimally switches to method S at
its myopic threshold λ0

λ1
. Thus the cartel has firm 2 switch its action at a belief where the expected

arrival rate on the innovative method is higher than that of the established method.
Since the game ends after the first breakthrough, there is no learning benefit from a breakthrough

and hence, in the cartel’s solution, no firm will be made to use method R for beliefs less than its myopic
cutoff. This implies that firm 1 is the last firm to switch to method S at its myopic belief p∗1 = λ0

λ1
.

Since firm 1 is more productive than firm 2, the cartel would gain if it could contemporaneously
substitute firm 1’s experimentation for firm 2’s. While such a contemporaneous substitution is not
feasible, it is however indeed possible for the cartel to substitute future experimentation by firm 1 for
current experimentation by firm 2. This intertemporal substitution, of course, comes at the price of
delaying the expected time of the breakthrough. For any belief strictly greater than λ0

λ2
, while more

future experimentation by firm 1 leads to an expected positive gain, the cartel incurs an expected
loss by giving up current experimentation by firm 2. At λ0

λ2
, the myopic threshold belief of firm

2, this expected loss is equal to zero. This implies that there exists an ε > 0 such that the cartel
does better by having firm 2 switch at the belief λ0

λ2
+ ε rather than at λ0

λ2
. This explains why the

optimal cutoff p∗2 is strictly greater than λ0
λ2

. Formally this can be understood as follows. At any
belief, the expected positive gain from making firm 2 use R is (λ2 p−λ0)(1− v), and the expected
loss from the environment becoming more pessimistic following hapless experimentation by firm 2 is

13



−λ2 p(1− p)v′. Since v is strictly convex and increasing in p for p ∈ (p∗1,1), we have v′(λ0
λ2
)> 0. This

implies that, at p= λ0
λ2

, the expected gain from firm 2 using R, (λ2 p−λ0)(1−v) = 0, is outweighed by
the cost −λ2 p(1− p)v′ < 0. The cartel’s incentive to substitute future experimentation by the stronger
firm for current experimentation by the weaker firm thus leads to a delay in the expected time of
breakthrough, suggesting that collusion between asymmetric firms harms their research productivity
by virtue of this intertemporal substitution effect.

5.2 Non-cooperative game

Our solution concept is Markov perfect equilibrium. Suppose that firm j follows the Markov strategy
k j. Firm i’s objective is to choose {ki,t}t≥0 so as to maximise

E
[∫ ∞

0
Ξt

[
((1− ki,t)λ0 + ki,t ptλi)α +((1− k j(pt))λ0 + k j(pt)ptλ j)(1−α)

]
dt
]
,

where Ξt := e−rt−λ0
∫ t

0(2−k j(pτ )−ki,τ )dτ−
∫ t

0 pτ (λ jk j(pτ )+λiki,τ )dτ , subject to the law of motion of beliefs (6).
The same steps as above allow us to write the following Bellman equation for firm i’s value function:

vi(p) = max
ki∈{0,1}

{
λ0(1− ki)α dt +λ0(1− k j)(1−α)dt + kiλi pα dt + k jλ j p(1−α)dt

+(1− r dt)[1−λ0(1− ki)dt −λ0(1− k j)dt − (kiλi + k jλ j)pdt][vi − (kiλi + k jλ j)p(1− p)v
′
i dt]}

⇒ rvi = λ0[1−2vi]+ max
ki∈{0,1}

ki{λi p[α − vi − (1− p)v
′
i]−λ0[α − vi]}

+ k j{λ j p[1−α − vi − (1− p)v
′
i]−λ0[1−α − vi]}. (9)

Firm i (i = 1,2) can guarantee itself an expected flow payoff of λ0(α − vi) + ((1 − k j)λ0 +

k jλ j p)(1−α − vi) = λ0(1− 2vi) + k j(λ j p− λ0)(1−α − vi) by using the established method (S).
The term {λi p[α − vi − (1− p)v

′
i]− λ0[α − vi]} captures the premium firm i receives by using the

innovative method. The expression ((1− k j)λ0 + k jλ j p)(1−α − vi) captures the payoff externality
firm j exerts on firm i if it has a success, while k jλ j p(1− p)v′i captures the informational externality
caused by firm j’s hapless experimentation with the innovative method.

Best Responses:
Suppose k j = 0 ( j ∈ {1,2}) in an open neighbourhood of p. From (9) and ODE (29), we can see

that using method R in a neighbourhood of p is optimal for firm i (i ∈ {1,2}; i ̸= j) if and only if

vi ≥
λ0

r+2λ0

14



is satisfied in that neighbourhood.
Next, suppose k j = 1 in an open neighbourhood of p. From (9) and ODE (33), we can infer that

choosing R is optimal for firm i in a neighbourhood of p if and only if

vi ≥
λ0α[λ1 +λ2]+λ1λ2 p[1−2α ]

rλi +λ0(λ1 +λ2)
(10)

is satisfied in that neighbourhood.
Our main result characterises the unique Markov perfect equilibrium of our game. For any level of

patent protection α , both firms will use a cutoff strategy in equilibrium, that is, they use the innovative
method if and only if the likelihood of it being good is above a threshold. Firm 1 uses the innovative
method (R) in the belief region (λ0

λ1
,1], and the established method (S) otherwise. Firm 2 uses the

innovative method (R) on (p̂2(α),1] and the established method (S) otherwise. Thus, while firm 1’s
cutoff is independent of α , firm 2’s equilibrium threshold is a decreasing function of α; the stronger
the level of patent protection α , the more firm 2 will be inclined to use the innovative method. Indeed,
the theorem shows that firm 2 will use the innovative method too much, compared to the cartel solution,
as soon as there is some level of patent protection, i.e., whenever α > 1

2 . If patent protection is
relatively weak, i.e., α < r+λ0

r+2λ0
, firm 2 will use the innovative method less than if it were by itself;

for α > r+λ0
r+2λ0

, by contrast, it uses the innovative method beyond the myopically optimal threshold.

If and only if α = r+λ0
r+2λ0

will it behave myopically, thereby minimising the expected time to a first
breakthrough.

This can be intuitively understood as follows. Firms have two goals: (1) on account of discount-
ing, they want the breakthrough to occur as soon as possible; (2) on account of the payoff rivalry
between them, they both want to be the one achieving the breakthrough. The level of patent protec-
tion determines the relative importance of these goals in the firms’ objectives. When there is no patent
protection, i.e., α = 1

2 , the payoff rivalry is shut down and firms behave cooperatively in the unique
Markov perfect equilibrium of the non-cooperative game; i.e., p̂2(

1
2) = p∗2. As soon as α > 1

2 , some
payoff rivalry comes into play, as both firms want to be the first inventor achieving the breakthrough;
as a result, p̂2(α) < p∗2 for all α > 1

2 . At the belief p = λ0
λ2

, the individual myopic expected payoff
to firm 2 is the same for both methods. However, by using method R, firm 2 is producing additional
information, implying that, if there is no breakthrough, firms become more pessimistic about the in-
novative method. In equilibrium, though, firm 1 uses method R until the belief reaches p∗1 =

λ0
λ1

. Thus,
as the belief decreases due to firm 2’s unsuccessful use of method R, the time firm 1 spends using R

is reduced. This implies that firm 1 switches sooner to method S, where it does not have an advan-
tage over 2, which is good news for firm 2 (provided α > 1

2). The bad news for firm 2 is that, if it
switches at any belief other than its myopic threshold p = λ0

λ2
, it lowers its own expected instantaneous

breakthrough rate on some interval of beliefs. How firm 2 trades-off these two countervailing effects
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depends on the level of patent protection α . For α = r+λ0
r+2λ0

, the two effects just cancel out and firm
2 best-responds by behaving myopically, i.e., as though it were by itself. For high levels of patent
protection (α > r+λ0

r+2λ0
), the desire to be first dominates at the myopic threshold and firm 2 extends

the use of the innovative method below its myopic threshold, while for low levels of patent protection
(α ∈ (1

2 ,
r+λ0
r+2λ0

)), firm 2’s cooperative motive prevails at the myopic threshold, and its equilibrium

cutoff satisfies p̂2(α) ∈ (λ0
λ2
, p∗2).

Thus, as p̂2(α) ≤ p∗2, the (negative) payoff externality overwhelms the (positive) informational
externality, and firms experiment (strictly) too much in equilibrium (if α > 1

2 and λ1 > λ2) compared
to the cartel solution. If the firms are perfectly symmetric, i.e., λ1 = λ2, the cartel and the non-
cooperative firm no longer have any divergent incentives to swap current experimentation by one
firm for future experimentation by the other firm, and the friction at the heart of the model, and
therefore the intertemporal substitution effect, disappear. Indeed, as we have seen in Section 4, when
firms are symmetric, the unique equilibrium coincides with the cartel solution and minimises the
expected waiting time for a breakthrough. When α = 1

2 , there is no longer any rivalry between the
firms, which consequently approach intertemporal substitution exactly as a cartel would, swapping
current experimentation by the weaker firm for future experimentation by the stronger firm, so that
equilibrium behaviour will coincide with the cartel’s behaviour.

Theorem 1 There exists a unique Markov perfect equilibrium. Equilibrium strategies are given by

k−1
1 (1) = (p∗1,1] and k−1

2 (1) = (p̂2(α),1]. Firm 2’s cutoff p̂2(α) is a strictly decreasing, continuously

differentiable, function, satisfying p̂2(
1
2) = p∗2, p̂2(

r+λ0
r+2λ0

) = λ0
λ2

, and p̂2(1)> p∗1.

The firms’ equilibrium payoffs are given by

v1(p) =


λ1α+λ2(1−α)

r+λ1+λ2
p+Crr

1 µ(p) ≡ vrr
1 (p) if p ∈ (p̂2(α),1]

λ0(1−α)
r+λ0

+ λ1 p
r+λ0+λ1

[
α − λ0(1−α)

r+λ0

]
+Crs

1 µ1(p) ≡ vrs
1 (p) if p ∈ (λ0

λ1
, p̂2(α)]

λ0
r+2λ0

if p ∈ (0, λ0
λ1
],

(11)

and

v2(p) =


λ2α+λ1(1−α)

r+λ1+λ2
p+Crr

2 µ(p) ≡ vrr
2 (p) if p ∈ (p̂2(α),1],

λ0α
r+λ0

+ λ1 p
r+λ0+λ1

[
1−α − λ0α

r+λ0

]
]+Crs

2 µ1(p) ≡ vrs
2 (p) if p ∈ (λ0

λ1
, p̂2(α)]

λ0
r+2λ0

if p ∈ (0, λ0
λ1
],

(12)

respectively.

The threshold p̂2(α) is implicitly defined by vrs
2 (p̂2(α)) = λ0α [λ1+λ2]+λ1λ2 p̂2(α)[1−2α]

rλ2+λ0(λ1+λ2)
. The con-

stants of integration are determined by value matching, i.e., Crs
1 > 0 is given by vrs

1 (p∗1) =
λ0

r+2λ0
and

Crs
2 by vrs

2 (p∗1) =
λ0

r+2λ0
. We have Crs

2 > 0 (Crs
2 < 0) if and only if α < r+λ0

r+2λ0
(α > r+λ0

r+2λ0
), and Crs

2 = 0
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if and only if α = r+λ0
r+2λ0

. Similarly, the constants of integration Crr
1 and Crr

2 > 0 are determined by

vrr
1 (p̂2(α)) = vrs

1 (p̂2(α)), and vrr
2 (p̂2(α)) = vrs

2 (p̂2(α)), respectively. The function v2 is smooth, while

v1 is smooth everywhere except at p = p̂2(α).

Proof. Existence of the equilibrium follows from standard verification arguments, while uniqueness
follows from the Bellman equation (9) and the relevant ODEs (Appendix A.2). Please see Appendix
E for a detailed proof.

For high values of patent protection (α > r+λ0
r+2λ0

), firm 2’s value function is decreasing and concave
in the region where only firm 1 uses method R; it is convex in the range where both firms use it. It
has an inflection point at p̂2(α), where firm 2 switches methods, and eventually becomes increasing
as firms become very optimistic about method R. For low levels of patent protection (α ≤ r+λ0

r+2λ0
), by

contrast, v2 is increasing and convex throughout.
Our analysis would suggest that, in the knife-edge case of perfectly symmetric firms, both the

cartel and the non-cooperative firms would behave consistently with the goal of the social planner
who wants to speed up the expected time of breakthrough as much as possible. However, as soon
as one firm is better capable of handling the innovative method, the cartel steers the less productive
firm away from the innovative method too soon, i.e., there is insufficient clustering in the innovative
method, as compared to what minimisation of the waiting time until a breakthrough would require.
What happens in non-cooperative equilibrium in the asymmetric case depends on the level of patent
protection, as summarised in the following corollary.

Corollary 1 Suppose the firms are asymmetric, i.e., λ1 > λ2. The expected time to the first break-

through is minimised for the level of patent protection α = r+λ0
r+2λ0

. If patent protection is strong, i.e.,

α > r+λ0
r+2λ0

, this expected time is delayed on account of excessive clustering of innovative efforts. If

patent protection is weak, i.e., α < r+λ0
r+2λ0

, this expected time is delayed on account of insufficient
clustering of innovative efforts. The delay due to insufficient clustering is worst when there is no

patent protection at all (i.e. α = 1
2 ) or firms form a cartel.

Thus, our analysis would suggest that, besides watching out for collusion between firms, policy-
makers who endeavour to speed up the expected time of a decisive breakthrough should be wary of
both too strong patent regimes as well as too weak ones. Indeed, the former will tend to exacerbate
firms’ rivalry to the point where the race to be first makes them engage in excessive clustering of in-
novative efforts. The latter, by contrast, makes firms behave “too cooperatively” in the sense that the
weaker firm will be too inclined to substitute future experimentation by its partner for its own current

experimentation, leading to insufficient clustering of research efforts. Our findings thus suggest a
formal channel explaining the puzzling decrease in R&D productivity connected with a strengthening
of patent protections, which has been noted in the empirical literature.
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Consequently, a social planner who intends to achieve the shortest expected time to the first dis-
covery should set patent protection to α = r+λ0

r+2λ0
. It is interesting to observe that this optimal patent

protection is a function of λ0 and r only, and, in particular, does not depend on the values of λ1 and λ2.
This a-priori surprising feature can be intuitively explained as follows. Recall that the optimal patent
protection has the property that, given firm 1’s equilibrium action, firm 2 finds it optimal to switch to
method S at the belief λ0

λ2
. In equilibrium, firm 1 will always play R on

(
λ0
λ1
,1
]
. It follows that, when

choosing the optimal α , a planner only has to worry about firm 2’s incentives. In particular, note that
firm 1 will always play R in a neighborhood of λ0

λ2
regardless of firm 2’s action. Note furthermore

that the parameter λ1 impacts firm 2’s incentives only via the payoff it receives from free-riding on
firm 1’s efforts. As λ0

λ2
is bounded away from λ0

λ1
, the payoff firm 2 gets from free-riding on firm 1’s

efforts is locally independent of its own action in some neighbourhood of λ0
λ2

. Firm 2’s incentives are
thus locally independent of λ1; thus, the optimal α will not depend on firm 1’s breakthrough rate λ1.
Furthermore, at the belief λ0

λ2
, the effective breakthrough rate for firm 2 is λ0, irrespectively of the

research method it chooses. Hence, the optimal α will not depend on λ2 either.
One general criticism against higher levels of patent protection is that it can adversely affect

the consumers’ welfare by making the market more concentrated. Since that channel is absent in
our framework as T S is independent of α , one a-priori might expect that a higher level of patent
protection was desirable to enhance research productivity. Our analysis rather surprisingly suggests
that even when consumers are not directly affected by the level of patent protection, excessive patent
protection is not desirable as it slows down the time to discovery. The comparison between the cartel
solution, non-cooperative solution and the social benchmark is depicted in Figure 2.

6 Extensions

In this section, we consider a more general version of our baseline model discussed above. Specifi-
cally, we shall explicitly model the impact of the patent regime on the post-innovation product market
(Subsection 6.1), incorporate explicit costs of conducting research (Subsections 6.2 and 6.3), as well
as a higher payoff from a breakthrough that is achieved with the innovative method (Subsection 6.4).
We explore how each of these modifications affects the results obtained in our main model.

We assume that, after the process innovation takes place, the demand for the product is described
by the inverse demand function P(Q) = Π̃(A−BQ), where Q is the quantity demanded at the price
P(Q), and Π̃ = 1 if the breakthrough has been achieved by the established method and Π̃ = Π ≥ 1
otherwise. We normalize production costs after an invention to 0. Furthermore, we assume that
patent protection gives the winner monopoly power over a share 2α − 1 of the product market; in
the remaining share 2(1−α), the two firms are engaged in Cournot competition. It follows that the
winner gets A2Π̃(10α−1)

36B ∈
[

A2Π̃
9B , A2Π̃

4B

]
, while the loser gets 2A2Π̃(1−α)

9B ∈
[
0, A2Π̃

9B

]
.
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Figure 2: Cartel, equilibrium and social optimum

We suppose that the flow cost of conducting research is s > 0. We write k(i)0,t = 1 (k(i)1,t = 1) if
firm i ∈ {1,2} uses arm S (R) at instant t; if firm i abstains from all research activity at instant t,
k(i)0,t = k(i)1,t = 0.

Again, let firm j ̸= i follow the Markov strategy (k( j)
0 ,k( j)

1 ). Firm i’s objective is to choose {ki,t}t≥0

so as to maximise

E
[∫ ∞

0
e−rt−λ0

∫ t
0(k

( j)
0 (pτ )+k(i)0,τ )dτ−

∫ t
0 pτ (λ jk

( j)
1 (pτ )+λik

(i)
1,τ )dτ

[
k(i)0,t

(
λ0

A2(10α −1)
36B

− s
)

+k(i)1,t

(
ptλi

A2Π(10α −1)
36B

− s
)
+ k( j)

0 (pt)λ0
2A2(1−α)

9B
+ k( j)

1 (pt)ptλ j
2A2Π(1−α)

9B

]]
subject to the law of motion of beliefs (6). Applying the same steps as above gives us the following
Bellman equation of player i in the non-cooperative game

rvi(p) = k( j)
0 β (i)

0 (p,vi)+ k( j)
1 β (i)

1 (p,vi)+ max
(k(i)0 ,k(i)1 )

{
k(i)0 [b(i)0 (p,vi)− s]+ k(i)1 [b(i)1 (p,vi)− s]

}
, (13)

where

β (i)
0 (p,v) := λ0

(
2A2(1−α)

9B
− v(p)

)
,
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β (i)
1 (p,v) := pλ j

(
2A2(1−α)

9B
Π− v(p)− (1− p)v′(p)

)
,

b(i)0 (p,v) := λ0

(
A2(10α −1)

36B
− v(p)

)
,

b(i)1 (p,v) := pλi

(
A2(10α −1)

36B
Π− v(p)− (1− p)v′(p)

)
.

Please refer to Appendix F for the closed-form expressions of the payoffs of player i ∈ {1,2}
under each possible action profile, and also the best response analysis for each possible action of
player j ̸= i.

6.1 The Product Market

We will first explore the effect of explicitly modelling the product market after the process innovation.
In order to do this, we assume Π = 1 and s = 0 in this subsection. As we have outlined above, post
innovation the aggregate profit is given by A2

36B(7+ 2α). Thus, as patent strength, and hence market
power, increases, industry profit strictly increases.

The following proposition shows that the conclusions obtained in our main analysis are robust to
this extension. To state the proposition, we define ᾱ = 8r+9λ0

8r+18λ0
∈
(1

2 ,1
)
.

Proposition 4 There exists a threshold p2(α) satisfying 0 < λ0
λ1

< p2(α) < 1 such that, on
(

0, λ0
λ1

]
,

both firms use arm S, on
(

λ0
λ1
, p2(α)

]
, firm 1 uses arm R and firm 2 uses arm S. Finally, for all

p ∈ (p2(α),1], both firms use arm R. The threshold p2(α) is a strictly decreasing and continuously

differentiable function of α satisfying p2(α) < λ0
λ2

if and only if α > ᾱ , p2(α) > λ0
λ2

if and only of

α < ᾱ , and p2(α) = λ0
λ2

if and only if α = ᾱ .

The proposition is a special case of Proposition 5, which is proved in Appendix G.
Thus, taking the post-innovation product market into account in a manner such that industry profits

depend on the patent strength α , does not change any of the qualitative results of our baseline model.
As in our baseline model, the patent strength ᾱ that minimises the expected time to a breakthrough
depends only on the discount rate r and the breakthrough rate λ0 with the established method—the
intuitive explanation is the same as in the preceding section.

We conclude this subsection by discussing how the level of patent protection affects social welfare
W defined in (1). In the current extension, the post-innovation social surplus T S = A2(7+2α)(5−2α)

72B .
Since T S is strictly decreasing in α , for α ∈ [ᾱ,1], W is strictly decreasing in α . For α ∈ [1

2 , ᾱ), the
effect of α on W is ambiguous, as, while a reduction in α increases the expected time to discovery, it
also increases T S. Hence, the welfare optimum is achieved at an α ∈ (1

2 , ᾱ]. We illustrate this point
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Figure 3: W for each level of α

in Figure 3 by means of a numerical example12. Figure 3 shows that W reaches its maximum at some
α̃ ∈ [1

2 , ᾱ), illustrating our conclusion that even when post-innovation surplus is adversely affected by
a higher level of patent protection, some level of patent protection might be desirable.

6.2 Incorporating Cost of research

In this subsection, we will incorporate a flow cost of conducting research, which is given by s >

0. In the absence of explicit research costs, players will always conduct research, using either the
established (S), or the innovative (R), approach. If the cost of conducting research is positive, however,
it is possible that one or both the research methods are dominated. In the current section, we will
consider only values of s > 0 such that, in equilibrium, at least one player uses R for some beliefs.
Further, we continue to explicitly model the product market, while assuming Π = 1. For a given level
of patent protection, the analysis is non-trivial only when s

λ1
< A2

36B(10α − 1); otherwise, method R

would be too expensive for both firms even if it was known to be good. As we assume λ1 > λ2 > λ0,
S would be dominated as well in this case, and hence no research would take place. Since α ≤ 1,
we shall therefore assume throughout that s

λ1
< A2

4B . This ensures that for the more productive firm,

12Parameter values are λ0 = 18, λ1 = 30, λ2 = 22, and r = 2.
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method R is not dominated for some values of α .
We will first consider the situation when the method S is not dominated for some values of α ∈

(1
2 ,1]. This implies s

λ0
< A2

4B . The following proposition shows that, if the cost of conducting research
is lower than a certain threshold, then there exists a cutoff equilibrium, as in our baseline model. To
state the following proposition, we define ᾱs =

8r+9λ0
8r+18λ0

+ s
8r+18λ0

36B
A2 .

Proposition 5 Suppose s
λ0

< A2

9B
λ2r

λ0λ1+λ2r . Then, there exists a cutoff equilibrium in which, on (0, λ0
λ1
],

both firms use arm S, on (λ0
λ1
, p2(α)], firm 1 uses arm R and firm 2 uses arm S, and for all p ∈

(p2(α),1], both firms use arm R, for some threshold p2(α) satisfying 0< λ0
λ1

< p2(α)< 1. This thresh-

old p2(α) is a strictly decreasing and continuously differentiable function of α , satisfying p2(α)< λ0
λ2

if and only if α > ᾱs, p2(α)> λ0
λ2

if and only if α < ᾱs, and p2(α) = λ0
λ2

if and only if α = ᾱs.

The proof of the proposition is relegated to Appendix G. The proposition shows that our previous
results are qualitatively robust to the introduction of small research costs. The optimal patent strength
is now a function of λ0, r and s; it is still independent of parameters λ1 and λ2, for the same reasons as
in our main analysis. However, once the research cost s exceeds λ0

A2

9B
λ2r

λ0λ1+λ2r , incentives regarding
the choice of research method change, as the following corollary shows.

Corollary 2 If A2

9B
λ2r

λ0λ1+λ2r < s
λ0

< A2

4B
λ2r

λ0λ1+λ2r , the cutoff equilibrium of our main analysis exists if

and only if the level of patent protection α exceeds the threshold α∗s = 1
10 +

s
10λ0

36B
A2

λ0λ1+λ2r
λ2r .

If s
λ0

< A2

9B
λ2r

λ0λ1+λ2r , method S dominates giving up, for all levels of patent protection α . Thus, the
exact value of the research cost s has no impact on the players’ incentives to free-ride, as both research
methods entail the same costs s. If A2

9B
λ2r

λ0λ1+λ2r <
s

λ0
< A2

4B
λ2r

λ0λ1+λ2r , however, this continues to be true
if and only if α > α∗s; for levels of patent protection below this threshold, firms prefer to give up,
rather than use method S, so that our equilibrium from Theorem 1 does not survive. Thus, for higher
research costs s, some post-innovation monopoly power becomes necessary to induce both firms to
use both research methods in equilibrium.

Next, we will focus our attention on the values of s such that the use of the established research
method S is strictly dominated for all levels of patent protection, i.e., s

λ0
> A2

4B . Thus, relevant actions
for players are either to conduct research using the innovative method R or to conduct no research.
This implies firms’ incentives to free-ride are related to the magnitude of the cost of conducting
research. In the following proposition, we first determine a condition that ensures the existence of an
equilibrium in cutoff strategies.

Proposition 6 Suppose λ0
A2

4B < s < λ2
A2

4B . There exists an ᾱ(s,λ1,λ2) ∈ (1
2 ,1) such that, for α ∈

(ᾱ(s,λ1,λ2),1], an equilibrium in cutoff strategies exists.
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The proof of the Proposition is relegated to Appendix H.
The above proposition shows that when the method S is strictly dominated, an equilibrium in

cutoff strategies exists for high enough levels of patent protection. In this cutoff equilibrium, there
exists a range of beliefs in which both firms use the method R. This suggests that, to incentivise both
firms to use R, the value of α should be high, lest any firm have an incentive to deviate and free-ride
on the other’s research. The following proposition formalises this intuition.

Proposition 7 Suppose max{λ0
A2

4B ,
rλ2

r+λ1

A2

9B}< s < λ2
A2

4B . If there exists an equilibrium in which both

firms use R for some range of beliefs, then α exceeds some threshold strictly larger than 1
2 .

Please refer to Appendix I for the proof. Thus, if research is so costly that the established method
S is dominated, high levels of patent protection are necessary for both firms to conduct research in
equilibrium. Hence, in such a scenario, a policy maker who values a fast discovery should set α high,
i.e., allow for more monopoly power to the discoverer in the post-innovation product market.

6.3 Fixed Cost of Market Entry

In our baseline model, we assume that firms do not have to pay a participation cost in order to engage
in R&D activities. In this subsection, we introduce such a fixed cost of entry for the weaker firm,
assuming that the strong firm has already entered the market. In the following proposition, we show
that for every p, v2 is decreasing in α , implying that the range of fixed costs for which the weaker
firm is willing to enter monotonically decreases in the strength of patent protection.

Proposition 8 In the unique equilibrium of our baseline model, v2 is (strictly) decreasing in α (on[
λ0
λ1
,1
]
).

Please refer to Appendix J for the proof.
The above proposition implies that, for any given p, it is more likely for the participation constraint

to be violated as the level of patent protection α increases, thus inducing firm 2 to quit. From our
baseline analysis, we already know that, when α exceeds r+λ0

r+2λ0
, discovery is delayed in expectation.

This means that, in the presence of fixed costs of entry, there can be further delays to discovery for
higher patent protections α > r+λ0

r+2λ0
, as firm 2 might drop out. Firm 1, for its part, will still use the

threshold λ0
λ1

, regardless of whether firm 2 enters the market.

6.4 Explicit Modelling of Π > 1

In this subsection we will explore the effect of having a higher payoff in the event the breakthrough
has been achieved through the innovative method R, i.e., the case of Π > 1. While we retain the
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product market in this subsection, we assume s = 0. From the Bellman equation (13), we now have
the following:

When both players use method S, then each gets the payoff vss = λ0
r+2λ0

A2(7+2α)
36B . When player j

uses the method R, it is optimal for player i to use R as long as his payoff vi satisfies

vi ≥ ψi =
A2

36B
[
λ0(λ1 +λ2)(10α −1)−λ1λ2Π[18α −9]p

rλi +λ0(λ1 +λ2)
]

If player i uses R and player j uses S, then player i’s payoff vrs
i and player j’s payoff vrs

j are given by

vrs
i =

λ0

r+λ0

2A2(1−α)

9B
(1− pλ1

r+λ0 +λ1
)+

λ1Πp
r+λ0 +λ1

A2(10α −1)
36B

+Crs
i µ1(p) (14)

vrs
j =

λ0

r+λ0

A2(10α −1)
36B

(1− pλ1

r+λ0 +λ1
)+

λ1Πp
r+λ0 +λ1

2A2(1−α)

9B
+Crs

j µ1(p) (15)

where µ1(p) = (1− p)[1−p
p ]

r+λ0
λ1 . Crs

i and Crs
j are constants of integration, which are determined from

the relevant boundary conditions.
In the current subsection, in addition to the case λ1 > λ0, which is the setting we adopt throughout

the paper, we also consider the variation where 0 < λ2 ≤ λ1 < λ0 but 0 < λ0 < λ2Π ≤ λ1Π. This
reflects a scenario where it is more difficult to get a breakthrough using a good innovative method R

but the payoff from the breakthrough is very high.
We first show that, for low levels of firm asymmetry, there does not exist any equilibrium in cutoff

strategies as in the main model, as the following proposition shows.

Proposition 9 Consider Π > 1 and α ∈ (1
2 ,1].

(i) If λ0 < λ1, then there exists a λ̄2 ∈ (λ0,λ1) such that, if λ2 ∈ (λ̄2,λ1), there does not exist an

equilibrium in cutoff strategies as in the main model.

(ii) If λ0 > λ1,then there exists a λ̄2 ∈ (0,λ1) such that, if λ2 ∈ (λ̄2,λ1), there does not exist an

equilibrium in cutoff strategies as in the main model.

Proof of this Proposition is relegated to Appendix K.
In any equilibrium in cutoff strategies, firm 1 will be the last player to experiment; let k1 = 1(p,1]

be its strategy. The reason for the non-existence of an equilibrium in cutoff strategies is that vrs
2 will

have a strictly positive slope at p if Π > 1. Verbally, this means that, for a higher payoff from the
innovative method (Π > 1), in some right-neighbourhood of p, the firm using S gets a benefit. This
is the case because p < λ0

λ1
. Indeed, at the belief λ0

λ1
, the breakthrough rates are the same for both

methods. From our previous analysis, we have seen that, for Π = 1, no player ever uses R below the
belief λ0

λ1
. However, when Π > 1, in the conjectured equilibrium, the last player to use R does so all
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Figure 4: No equilibrium in cutoff strategies for a low degree of asymmetry

the way down to the belief p < λ0
λ1

. Hence, there exists a range of beliefs at which firm 1 is using R

when the instantaneous breakthrough rate is higher on S. As long as there is some competition (i.e.
α > 1

2 ), this is beneficial to firm 2. Note that for extreme competition (α = 1) firm 2 only cares about
the breakthrough rate of the opponent. This explains the result.

In Figure 4, we illustrate in an example13 that, if λ2 is very close to λ1, an equilibrium in cutoff
strategies will not exist. ψi is the best response line for firm i. This means, if firm j ̸= i is using the
method R, then it is a best response of firm i to use R (S) as long as the value of firm i is above (below)
ψi. On the other hand, if firm j is using S, then it is a best response of firm i to use R as long as the
value of firm i is above vss. As one can observe, in a right neighborhood of p, vrs

1 , the value of firm
1, is above vss and vrs

2 , the value of firm 2, is below ψ2. This implies firm 1 using R and 2 using S

constitute mutual best responses. In an equilibrium in cutoff strategies, firm 1 using R should be a
best response for all p ∈ (p,1). However, one can observe that using method R becomes dominant for
firm 2 at a belief p̂2 when vrs

1 is still below ψ1. This implies that in a right neighborhood of p̂2, using
R is not a best response for firm 1, and hence, the conjectured equilibrium does not exist.

13Parameter values for this figure: λ0 = 1; λ1 = 1.14; λ2 = 1.1; Π = 1.5; r = 1 and α = 0.6.
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Conversely, an equilibrium in cutoff strategies will reappear if the parameters are such that using
method R becomes dominant for firm 1 at a belief that is strictly lower than the corresponding belief
for firm 2. This case is illustrated in Figure 5.14 As we can see, p

′
1 < p̂2 in this case, which ensures

that using R becomes dominant for firm 1 at a belief when firm 2’s value is still below its best response
line ψ2, ensuring the existence of the conjectured equilibrium. The following proposition establishes
a sufficient condition for the existence of the equilibrium in cutoff strategies.

Proposition 10 Suppose Π > 1. For any α ∈ [1
2 ,1), there exists a r̄(α) such that, for all r > r̄(α), an

equilibrium in cutoff strategies exists when agents are very asymmetric (when λ1 is large or λ2 is very

small). The threshold r̄(·) is continuous, strictly increasing and satisfies r̄(1
2) = 0 and limα↑1 r̄(α) =

∞.

The proof is relegated to Appendix L
The preceding proposition suggests the following. Suppose that r > r̄(α) for given values of α and

λ0. This is indeed the case for the example15 in Figure 4. Then, by making firms more asymmetric,
we can guarantee the existence of an equilibrium in cutoff strategies. This is illustrated in Figure 5,
where we are using the same parameters as in Figure 4 but have increased λ1.

7 Conclusion

We have shown that, in a patent-race model with dynamic learning and optimal readjustment of project
selection, the combination of payoff externalities and asymmetric players gives rise to higher amounts
of experimentation in equilibrium than in the cartel’s solution. This effect is the stronger the more
potent the regime of patent protection. The equilibrium expected time to breakthrough is minimised
for an interior level of patent protection. This expected time to breakthrough is delayed on account
of excessive (insufficient) clustering of experimentation if patent protection is above (below) this
threshold.

From a policy point of view, our main contribution lies in the identification of the intertemporal-
substitution effect. Our baseline model is the simplest setting we can think of that features this effect;
in fact, it is the only source of friction in our baseline model. This is illustrated by the fact that
efficiency obtains in both the cartel problem and in equilibrium when firms are symmetric, see Propo-
sitions 1 and 2. Indeed, for the intertemporal-substitution effect to arise, it is necessary that there be
a strictly weaker and a strictly stronger firm. Indeed, by virtue of this effect, the weaker firm distorts
its choice of method, as it is willing to incur a reduction in its success rate by over-(under-) using

14Parameter values for this figure: λ0 = 1; λ1 = 1.5; λ2 = 1.1; Π = 1.5; r = 1 and α = 0.6.
15λ0 = 1 and α = 0.6 lead to r̄(α) = 0.56.
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Figure 5: Equilibrium in cutoff strategies

the innovative option in the adversarial (cooperative) environments induced by strong (weak) patent
protection.

Interestingly, the threshold patent protection, at which the effect changes sign, does not depend
on the properties of the innovative option (i.e., on λ1 and λ2). When we introduce a positive cost of
conducting research s > 0, the usual trade-off re-appears as well in our model, in that stronger patent
protection, and therefore greater monopoly power and lower welfare in the post-innovation product
market, become necessary to incentivise exploration by firms. Whatever the research cost, how-
ever, policymakers ought to be aware that the choice of patent regime impacts firms’ strategic choice
of research avenue, and thereby the expected arrival of an innovation, through the intertemporal-
substitution effect. This effect arises whenever asymmetric firms are capacity-constrained and their
research efforts impact their competitors’ beliefs about an innovative technology.

In contrast to models of purely informational externalities, such as Keller, Rady and Cripps
(2005), our Markov perfect equilibrium is unique. It is furthermore in cutoff strategies, while there
does not exist an equilibrium in cutoff strategies in Keller, Rady and Cripps (2005). In our setting,
moreover, equilibrium deviates from the cooperative solution because of higher information produc-
tion, while all equilibria in Keller, Rady and Cripps (2005) have the feature that players experiment
too little compared to the cooperative benchmark.

We have confined our analysis to a two-player setting. While the analysis becomes increasingly
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complex as the number of players grows, we should expect our main qualitative insights to carry
over to a setting with N ≥ 3 players. In particular, the intertemporal-substitution effect, by virtue
of which the adversarial (cooperative) setting induced by strong (weak) patent protection provides
weaker firms with excessive (insufficient) incentives to use innovative research avenues, should carry
over to a setting with an arbitrary number of firms. We should furthermore expect the insight that
greater asymmetry among firms favours the existence of cutoff equilibria16 to apply in a setting with
N players as well, as a cutoff equilibrium exists if and only if the innovative method becomes dominant
for the stronger firm before it does for the weaker firm. Yet, with N players (and Π> 1), we conjecture
that a result corresponding to Proposition 10 would require high levels of asymmetry across all firms.

In our model, research abilities, and hence the degree of asymmetry across players, are exoge-
nously given. It would be interesting to investigate a setting in which players’ abilities grew over time
as a function of past research efforts (learning by doing).17 Furthermore, whether to take out a patent,
and thus to make one’s findings public, is often a strategic decision, conceivably impacting firms’
choices of research avenues. We commend these questions to future research.
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APPENDIX

A Ordinary Differential Equations

We define the following decreasing and convex functions:

µi(p) = (1− p)
(

1− p
p

) r+λ0
λi

;

µ(p) = (1− p)
(

1− p
p

) r
λ1+λ2

.

Throughout this section, we write C for a constant of integration, which is determined from the specific
boundary condition. We furthermore write i and j for the two firms, i.e, {i, j}= {1,2}.

A.1 ODEs in the game with symmetric firms

Cartel’s problem:
If k = 0 is chosen at belief p, the cartel’s payoff satisfies v(p) = 2λ0

r+2λ0
. If the cartel chooses k = 2

on an open set of beliefs, its payoff function satisfies the ODE

2λ1 p(1− p)v′+(r+2λ1 p)v = 2λ1 p. (16)

This is solved by

v(p) =
2λ1 p

r+2λ1
+Cµ(p). (17)

The non-cooperative game:
If both firms adopt S, either firm’s value function satisfies

v(p) =
λ0

r+2λ0
.
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If both firms adopt R on an open set of beliefs, either firm’s value function satisfies

2λ1 p(1− p)v′+(r+2λ1 p)v = λ1 p (18)

on this open set. This ODE is solved by

v(p) =
λ1 p

r+2λ1
+Cµ(p). (19)

Now, suppose firm i adopts method R and firm j adopts method S on an open set of beliefs. Then,
firm i’s value function satisfies

λ1 p(1− p)v
′
i +(r+λ0 +λ1 p)vi = λ0(1−α)+λ1 pα (20)

on this open set. This is solved by

vi(p) =
λ0(1−α)

r+λ0
+

λ1 p
r+λ0 +λ1

[
α − λ0(1−α)

r+λ0

]
+Cµ1(p). (21)

By the same token, j’s value function satisfies

λ1 p(1− p)v
′
j +(r+λ0 +λ1 p)v j = αλ0 +λ1 p(1−α). (22)

This is solved by

v j(p) =
λ0α

r+λ0
+

λ1 p
r+λ0 +λ1

[
1−α − λ0α

r+λ0

]
+Cµ1(p). (23)

A.2 ODEs in the game with asymmetric firms

Cartel’s problem:
If k1 = k2 = 0 at belief p, the cartel’s payoff is v(p) = 2λ0

r+2λ0
.

If the cartel chooses k1 = 1 and k2 = 0 on an open set of beliefs, its payoff function satisfies the
ODE

λ1 p(1− p)v′+(r+λ0 +λ1 p)v = λ0 +λ1 p. (24)

This is solved by

v(p) =
λ0

r+λ0
+

rλ1

(r+λ0)(r+λ0 +λ1)
p+Cµ1(p). (25)

If the cartel chooses k1 = k2 = 1 on an open set of beliefs, its payoff function satisfies the ODE

(λ1 +λ2)p(1− p)v′+(r+(λ1 +λ2)p)v = (λ1 +λ2)p. (26)
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This is solved by

v(p) =
λ1 +λ2

r+λ1 +λ2
p+Cµ(p). (27)

Non-cooperative game
Suppose both firms adopt method S. Inserting k1 = k2 = 0 in (9), we can see that both players’

payoff is given by the constant
λ0

r+2λ0
. (28)

Suppose firm i adopts method R and j adopts method S. Inserting ki = 1 and k j = 0 in (9), we can
infer that the payoff function of firm i satisfies the ODE

λi p(1− p)v
′
i +(r+λ0 +λi p)vi = λ0(1−α)+λi pα . (29)

The solution to the above differential equation is

vrs
i (p) =

λ0(1−α)

r+λ0
+

λi p
r+λ0 +λi

[
α − λ0(1−α)

r+λ0

]
+Cµi(p). (30)

Firm j’s payoff satisfies

λi p(1− p)v
′
j +(r+λ0 +λi p)v j = λ0α +λi p(1−α). (31)

The solution to the above differential equation is

vrs
j (p) =

λ0α
r+λ0

+
λi p

r+λ0 +λi

[
1−α − λ0α

r+λ0

]
+Cµi(p). (32)

Finally, consider the situation where both firms adopt method R. Inserting k1 = k2 = 1 in (9), we
can infer that the payoff function of either firm i satisfies the ODE

(λ1 +λ2)p(1− p)v
′
i +(r+(λ1 +λ2)p)vi =

(
λiα +λ j(1−α)

)
p. (33)

The solution to the above differential equation is

vrr
i (p) =

λiα +λ j(1−α)

r+λ1 +λ2
p+Cµ(p). (34)
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B Proof of Proposition 1

The payoff function associated with the policy k∗ is v. Since λ0
r+2λ0

− λ1
r+2λ1

p∗1 > 0, we know that
for p ∈ (p∗1,1), v is strictly convex. Since v satisfies the value matching condition at p = p∗1, direct
computation shows that v′(p∗1) = 0. Hence, v is of class C1 and strictly increasing for p ∈ (p∗1,1).
From the ODE (16), we know that λ1 p[1

2 − v− v′(1− p)] = r
2v. At p = p∗1, v = λ0

r+2λ0
. This implies

rv= λ0(1−2v). Since v is strictly increasing for p> p∗1, for all p∈ (p∗1,1), we have rv> λ0(1−2v)⇒
λ1 p[1−2v−2v′(1− p)]> λ0(1−2v). Thus, choosing k = 2 solves the Bellman equation. On the other
hand, since v′ = 0 for p ≤ p∗1, we have λ1 p[1−2v−2v′(1− p)]≤ λ0(1−2v) for p ∈ (0, p∗1]. Hence,
choosing k = 0 satisfies the Bellman equation. This shows that the payoff function associated with
the proposed policy satisfies the Bellman equation, and hence constitutes the cartel’s value function.

C Proof of Proposition 2

We will show that given firm j ( j = 1,2) adopts the method R for p> p∗1 and S for p≤ p∗1, this strategy
also constitutes the best response of firm i. Consider p ≤ p∗1. In this range, we have vi =

λ0
r+2λ0

.

Given firm j’s strategy, i has no incentive to deviate as λ1 p[1− λ0
r+2λ0

] < λ0[1− λ0
r+2λ0

] for p < p∗1.
Next, consider the range of beliefs (p∗1,1). From the closed-form solution of vi (see equation (17)
in Appendix A.1), we can see that vi is strictly increasing and convex as [ λ0

r+2λ0
− λ1

r+2λ1
p∗1] > 0. At

p = p∗1, vi =
2αλ0+λ1 p(1−2α)

r+2λ0
. Since α ≥ 1

2 , 2αλ0+λ1 p(1−2α)
r+2λ0

is non-increasing in p. This implies that,

for all p > p∗1, we have vi >
2αλ0+λ1 p(1−2α)

r+2λ0
.

To show uniqueness, consider again the range p ≤ p∗1 and suppose that a firm adopts method R

for a range of beliefs (pl, ph) such that pl < ph ≤ p∗1. Let p̂ < p∗1 be the infimum of such beliefs
pl . Then, v j(p̂) = vi(p̂) = λ0

r+2λ0
. Assume without loss of generality that firm i adopts method R in

some right-neighbourhood of p̂. By the ODEs (18) and (20), it follows immediately from p̂ < p∗1 that
vi <

λ0
r+2λ0

≤ 2αλ0+λ1 p(1−2α)
r+2λ0

to the immediate right of p̂, implying i has a profitable deviation in a
right-neighbourhood of p̂.

Now, consider the range (p∗1,1]. We shall first show that there cannot be a p̌ ∈ (p∗1,1] such that
(ki,k j)(p̌) = (0,0) in any equilibrium. Indeed, suppose to the contrary that this was the case. Then,
vi(p̌) = v j(p̌) = λ0

r+2λ0
. By left-continuity of strategies, there exists some left-neighbourhood N

of p̌ such that vi = v j =
λ0

r+2λ0
and v′i = v′j = 0 in this neighbourhood. The Bellman equation (5)

now implies that either player has a profitable deviation on N ∩ (p∗1, p̌). Now, suppose there is an
equilibrium in which it is not the case that (ki,k j) = (1,1) prevails everywhere on (p∗1,1]. Then, there
exists some p̃ ∈ (p∗1,1] and a firm j such that v j(p̃) = λ0

r+2λ0
and v′j(p̃−) ≤ 0. (18) and (20) imply

that we must have (ki,k j)(p̃) = (1,0). The Bellman equation (5) immediately implies that j has a
profitable deviation to the immediate left of p̃.
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D Proof of Proposition 3

The policy k∗ = (k∗1,k
∗
2) implies the payoff function v (given by (8)). As Crs > 0, vrs(p∗1) =

2λ0
r+2λ0

and v′rs(p∗1) = 0, v|(0,p∗2) is C1, (strictly) increasing and (strictly) convex (on (p∗1, p∗2)). By ODEs
(24) and (26), we have that v′rs(p∗2) = v′rr(p∗2). We shall now show that this smooth pasting at p∗2
implies that Crr > 0. Indeed, assume to the contrary that Crr ≤ 0. As µ ′ < 0 and p∗2 < 1, this implies
v′rr(p∗2) >

λ1+λ2
r+λ1+λ2

. Yet, as Crs > 0 and µ ′
1 < 0, we have that v′rs(p∗2) <

rλ1
(r+λ0)(r+λ0+λ1)

< λ1+λ2
r+λ1+λ2

, a
contradiction. Thus, Crr > 0, and the payoff function v is C1, (strictly) increasing and (strictly) convex
(on (p∗1,1)).

On (0, p∗1), v = 2λ0
r+2λ0

and v′ = 0, so that λi p(1− v)−λ0(1− v)< 0, as p < p∗1 =
λ0
λ1

< λ0
λ2

. Thus,
k∗1 = k∗2 = 0 solves the Bellman equation (7) in this range.

For p ∈ (p∗1, p∗2), (24) implies

λ1 p[1− v− v′(1− p)] = (r+λ0)v−λ0.

Since v(p∗1) =
2λ0

r+2λ0
and v is strictly increasing on (p∗1, p∗2), we have λ1 p[1− v− v′(1− p)] = (r +

λ0)v−λ0 > λ0(1− v) for this range of beliefs. Thus, k∗1 = 1 solves (7) for these beliefs. By the same
token, (24) gives us

λ2 p[1− v− v′(1− p)] =
λ2

λ1
[(r+λ0)v−λ0].

Since v is strictly increasing on (p∗1, p∗2) and v(p∗2) = vrs(p∗2) = vrr(p∗2) =
λ0(λ1+λ2)

rλ2+λ0(λ1+λ2)
, we have that

v < λ0(λ1+λ2)
rλ2+λ0(λ1+λ2)

in this range, and hence

λ2 p[1− v− v′(1− p)] =
λ2

λ1
[(r+λ0)v−λ0]< λ0(1− v).

Hence, k∗2 = 0 solves (7) on (p∗1, p∗2).
Now, let p > p∗2. As v is strictly increasing, v(p) > λ0(λ1+λ2)

rλ2+λ0(λ1+λ2)
= v(p∗2) >

λ0(λ1+λ2)
rλ1+λ0(λ1+λ2)

. By
(26), we have

λ2 p[1− v− v′(1− p)] =
λ2

λ1 +λ2
rv,

and hence λi p[1− v− v′(1− p)]> λ0(1− v) (i = 1,2). Thus, k∗1 = k∗2 = 1 solves (7) for p > p∗2.
In conclusion, the payoff function v is C1, and solves the Bellman equation (7); it is thus the value

function, and k∗ = (k∗1,k
∗
2) is the optimal policy.

It remains to show that p∗2 >
λ0
λ2

. From (7), we can infer that

λ2 p∗2[1− v(p∗2)− (1− p∗2)v
′(p∗2)] = λ0[1− v(p∗2)]
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Since v′(p∗2)> 0 and v(p∗2)< 1, we have

λ2 p∗2[1− v(p∗2)]> λ2 p∗2[1− v(p∗2)− (1− p∗2)v
′(p∗2)] = λ0[1− v(p∗2)]

⇒ p∗2 >
λ0

λ2
.

E Proof of Theorem 1

The proposed policies imply a well-defined law of motion of the posterior belief, and lead to the
payoff functions as stated in the theorem.

The constant of integration Crs
1 is determined from vrs

1

(
λ0
λ1

)
= λ0

r+2λ0
, which immediately implies

Crs
1 > 0, as λ1 > λ0, and α ≥ 1

2 > λ0
r+2λ0

. Direct computation shows vrs′
1 (λ0

λ1
+) = 0.

By the same token, the constant of integration Crs
2 is determined from vrs

2

(
λ0
λ1

)
= λ0

r+2λ0
. Direct

calculation shows that this implies vrs′
2 (λ0

λ1
+) = 0, Crs

2 < 0 if α > r+λ0
r+2λ0

, Crs
2 > 0 if α < r+λ0

r+2λ0
, and

Crs
2 = 0 if α = r+λ0

r+2λ0
. Using the ODEs (31) and (33), together with value matching and the definition

of p̂2,18 establishes smooth pasting at p̂2. Thus, v2 is continuously differentiable. On (p̂2,1), it is
strictly decreasing and concave on (p∗1, p̂2) if α > r+λ0

r+2λ0
, strictly increasing and convex if α < r+λ0

r+2λ0

and flat at λ0
r+2λ0

if α = r+λ0
r+2λ0

. As we shall show below, it is convex on (p̂2,1).
We now show that p̂2(α) is well-defined, i.e. that there exists a unique p̂2(α) ∈ (p∗1,1) such that

F(p̂2(α),α) = 0, where the differentiable function F is defined by

F(p,α) = vrs
2 (p)− λ0α(λ1 +λ2)+λ1λ2 p(1−2α)

rλ2 +λ0(λ1 +λ2)
.

At p = p∗1, vrs
2 (p) = λ0

r+2λ0
and λ0α(λ1+λ2)+λ1λ2 p∗1(1−2α)

rλ2+λ0(λ1+λ2)
= αλ0λ1+(1−α)λ0λ2

rλ2+λ0(λ1+λ2)
. Thus, we have

λ0α(λ1 +λ2)+λ1λ2 p(1−2α)

rλ2 +λ0(λ1 +λ2)
− vrs

2 (p) =
λ0(αr+(2α −1)λ0)(λ1 −λ2)

(rλ2 +λ0(λ1 +λ2))(r+2λ0)
> 0

as α ≥ 1
2 . Thus, F(p∗1,α)< 0 for all α ≥ 1

2 .
At p = 1, we have vrs

2 (p) = αλ0+(1−α)λ1
r+λ0+λ1

and λ0α(λ1+λ2)+λ1λ2 p(1−2α)
rλ2+λ0(λ1+λ2)

= αλ0(λ1+λ2)+(1−2α)λ1λ2
rλ2+λ0(λ1+λ2)

. Let

A = αλ0+(1−α)λ1
r+λ0+λ1

− αλ0(λ1+λ2)+(1−2α)λ1λ2
rλ2+λ0(λ1+λ2)

. Direct computation shows that A is strictly increasing in α ,
and at α = 1

2 , A > 0. Thus, for all α ≥ 1
2 , we have F(1,α)> 0.

If α < r+λ0
r+2λ2

, vrs
2 is strictly increasing, while p 7→ λ0α(λ1+λ2)+λ1λ2 p(1−2α)

rλ2+λ0(λ1+λ2)
is decreasing. Thus, we

can conclude that there exists a unique p̂2(α) ∈ (p∗1,1) such that F(p̂2(α),α) = 0.

18We omit the argument of p̂2(α) whenever it is convenient to do so.
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If α ≥ r+λ0
r+2λ2

, both vrs
2 and p 7→ λ0α(λ1+λ2)+λ1λ2 p(1−2α)

rλ2+λ0(λ1+λ2)
are (weakly) decreasing in p. The slope of

vrs
2 is bounded below by λ1

r+λ0+λ1
(1− r+2λ0

r+λ0
α), while the slope of λ0α(λ1+λ2)+λ1λ2 p(1−2α)

rλ2+λ0(λ1+λ2)
is λ1λ2(1−2α)

rλ2+λ0(λ1+λ2)
.

Since
B =

λ1λ2(2α −1)
rλ2 +λ0(λ1 +λ2)

− λ1

r+λ0 +λ1
(
r+2λ0

r+λ0
α −1)

is strictly increasing in α and at α = r+λ0
r+2λ0

we have B > 0, we can conclude that, for all α ≥ r+λ0
r+2λ0

,

we have B > 0. Thus, the slope of p 7→ λ0α(λ1+λ2)+λ1λ2 p(1−2α)
rλ2+λ0(λ1+λ2)

is strictly lower than the lower bound
on the slope of vrs

2 , so that we can conclude that there exists a unique p̂2(α) ∈ (p∗1,1) such that
F(p̂2(α),α) = 0.

That p̂2(
1
2)= p∗2 follows immediately from the defining equations. By player 2’s Bellman equation

(9), smooth pasting at p̂2 implies that λ2 p̂2(α − v2(p̂2)− (1 − p̂2)v′2(p̂2)) = λ0(α − v2(p̂2)). As
v′2(p̂2)< 0, v′2(p̂2) = 0 and v′2(p̂2)> 0 in the cases α > r+λ0

r+2λ0
, α = r+λ0

r+2λ0
and α < r+λ0

r+2λ0
, respectively,

this implies p̂2 <
λ0
λ2

if α > r+λ0
r+2λ0

, p̂2 =
λ0
λ2

if α = r+λ0
r+2λ0

and p̂2 >
λ0
λ2

if α < r+λ0
r+2λ0

.
We shall now show that the cutoff p̂2 is strictly decreasing in α . Direct computation shows that

∂F
∂ p > 0, so that the sign of d p̂2

dα is the opposite of the sign of ∂F
∂α . Direct computation shows that

∂F
∂α (p,α) is independent of α and a strictly increasing continuous function of p, which is strictly
negative at p = λ0

λ1
and strictly positive at p = λ0

λ2
. Thus, there exists a unique p̃ ∈ (λ0

λ1
, λ0

λ2
) such that

∂F
∂α switches its sign from negative to positive as p increases to p̃.

Since p̂2 ≥ λ0
λ2

for α ∈
[

1
2 ,

r+λ0
r+2λ0

]
, it follows that p̂2 is strictly decreasing in α in this range.

Now suppose there exists an α̂ ∈ ( r+λ0
r+2λ0

,1] such that p̂2(α̂) = p̃. Then, ∂F
∂α (p̂2(α̂), α̂) = 0. As

α̂ > r+λ0
r+2λ0

, p̃ < λ0
λ2

. Since all higher derivatives of this function of α are also 0 at α̂ , it follows that

p̂2(
1
2) = p̂2(α̂) = p̃. As, by Proposition 3, p̂2(

1
2) = p∗2 >

λ0
λ2

, we get the following chain of inequalities:
λ0
λ2

< p̂2(
1
2) = p̂2(α̂) = p̃ < λ0

λ2
, a contradiction.

It remains to show that our payoff functions satisfy the Bellman equation (9). First, consider the
range [0, λ0

λ1
]. As vi =

λ0
r+2λ0

and v′i = 0 in this range, it is immediate that ki = 0 solves the Bellman
equation in this range.

Next, let us consider the range (λ0
λ1
, p̂2]. As v1 >

λ0
r+2λ0

in this range, k1 = 1 satisfies the Bellman

equation. Since v2(p) ≤ αλ0(λ1+λ2)+λ1λ2 p(1−2α)
rλ2+λ0(λ1+λ2)

for all p ∈ (λ0
λ1
, p̂2] by construction, k2 = 0 satisfies

the Bellman equation as well.
Finally, we consider the range of beliefs (p̂2,1], and first establish strict convexity of v2 in this

range. To do so, we consider the function ṽ2(p) = λ2α+λ1(1−α)
r+λ1+λ2

p+C̃2µ(p), where the constant C̃2 is

implicitly defined by ṽ2(p∗1) =
λ0

r+2λ0
. This immediately implies that C̃2 > 0. By our previous step,

player 2 uniquely best-responds by using the established method in the range (p∗1, p̂2), which implies
that v2 > ṽ2 on (p∗1, p̂2). Therefore, v2(p̂2) =

λ2α+λ1(1−α)
r+λ1+λ2

p̂2+Crr
2 µ(p̂2)≥ ṽ2(p̂2), Thus, Crr

2 > 0, and
v2 is strictly convex on (p̂2,1).
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By convexity of v2, smooth pasting at p̂2 and the fact that the graph of vrs
2 intersects the graph of

p 7→ αλ0(λ1+λ2)+λ1λ2(1−2α)p
rλ2+λ0(λ1+λ2)

from below , v′2 > λ1λ2(1−2α)
rλ2+λ0(λ1+λ2)

in the range (p̂2,1). This implies that

v2(p) > αλ0(λ1+λ2)+λ1λ2(1−2α)p
rλ2+λ0(λ1+λ2)

for all p in this range, and hence player 2 is playing a best response
at these beliefs as well.

To show the best-response property on (p̂2,1) for player 1 as well, we consider the function
ṽ1(p) = λ1α+λ2(1−α)

r+λ1+λ2
p+C̃1µ(p), where the constant C̃1 is implicitly defined by ṽ1(p̂2) =

λ0
r+2λ0

. From

(33), it follows that, at any belief p̃ such that ṽ1(p̃) = λ0
r+2λ0

, we have ṽ1
′
(p̃) > 0 if and only if p̃ >

rλ0
λ0(2α−1)(λ1−λ2)+r(λ1α+λ2(1−α)) . We will now distinguish the cases (1.) α ≥ r+λ0

r+2λ0
and (2.) α <

r+λ0
r+2λ0

. Direct computation shows that rλ0
λ0(2α−1)(λ1−λ2)+r(λ1α+λ2(1−α)) ≤

λ0
λ1

if and only if α ≥ r+λ0
r+2λ0

.

As p̂2 > λ0
λ1

, we can conclude that, in case (1.), ṽ1 > λ0
r+2λ0

for all p > p̂2. Since vrr
1 (p̂2) > ṽ1(p̂2)

and vrr
1 (1) = ṽ1(1), we can conclude that vrr

1 (p) > ṽ1(p), and hence that player 1 is playing a best
response as well, for all p ∈ (p̂2,1). Now, let us turn to case (2.). Direct computation shows that
λ0
λ2

> rλ0
λ0(2α−1)(λ1−λ2)+r(λ1α+λ2(1−α)) . Since p̂2 >

λ0
λ2

in case (2.), we can infer that ṽ1(p) > λ0
r+2λ0

for
all p > p̂2. Since vrr

1 (p̂2)> ṽ1(p̂2) and vrr
1 (1) = ṽ1(1), we can again conclude that vrr

1 (p)> ṽ1(p) for
p ∈ (p̂2,1). The fact that, for p > p∗1, αλ0(λ1+λ2)+λ1λ2 p(1−2α)

rλ1+λ0(λ1+λ2)
< λ0

r+2λ0
implies that firm 1 is playing a

best response on (p̂2,1) in case (2.) as well.
Let ((k1(p),k2(p))p∈[0,1] be an equilibrium of the game and define pl = inf{p ∈ [0,1] : ∃i ∈

{1,2},ki = 1}. If pl >
λ0
λ1

, firm 1 has profitable deviation on (λ0
λ1
, pl). Thus, pl ≤ λ0

λ1
.

Suppose that pl <
λ0
λ1

. There are now two possibilities. (i) First, suppose both firms are us-

ing R to the immediate right of pl . Note that, for any p < λ0
λ1

, we have αλ0(λ1+λ2)+λ1λ2 p(1−2α)
rλ2+λ0(λ1+λ2)

>
λ0[αλ1+(1−α)λ2]

rλ2+λ0(λ1+λ2)
> λ0

r+2λ0
> 0. As payoffs are continuous and both firms’ payoff at p = pl is equal to

λ0
r+2λ0

, we will have
αλ0(λ1 +λ2)+λ1λ2 p(1−2α)

rλ2 +λ0(λ1 +λ2)
> v2(p)

in some right-neighbourhood of pl , and thus firm 2 is not playing a best response-a contradiction.
Thus, suppose that (ii) only one of the firms, firm i, is using R at beliefs just above pl . As pl <

λ0
λ1

< λ0
λ2

,

(29) implies that v
′
i < 0 for beliefs just above pl . This implies that vi drops below λ0

r+2λ0
in some right-

neighbourhood of pl , implying that firm i is not playing a best response there. We thus conclude that
pl =

λ0
λ1

.

We will now establish that, in any equilibrium, there exists a right-neighbourhood of λ0
λ1

in which
firm 1 plays R while firm 2 plays S. First, suppose to the contrary that both firms play R just above
λ0
λ1

. Then, by the same argument as above, v2 <
αλ0(λ1+λ2)+λ1λ2 p(1−2α)

rλ2+λ0(λ1+λ2)
for some beliefs just above λ0

λ1
,

implying that firm 2 is not playing a best response there. By the same token, it is not possible that
only firm 2 uses R in equilibrium to the immediate right of λ0

λ1
, because, by (29), the payoff of firm 2

would fall below λ0
r+2λ0

–a contradiction. We have thus established that, in any equilibrium, firm 1 will
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play R while firm 2 will play S in some right-neighbourhood of λ0
λ1

.

For the range (p∗1, p̂2], we shall distinguish two cases: (1.) α ≥ r+λ0
r+2λ0

and (2.) α < r+λ0
r+2λ0

. We start

with case (1.), and shall argue next that, in no equilibrium, there exists a p
′ ∈ (λ0

λ1
, p̂2) such that to the

immediate right of p
′
, firm 2 uses the method R and firm 1 uses S. Suppose to the contrary that such a

p′ exists and let p
′
l be the lowest of such beliefs p′. Then, if α > r+λ0

r+2λ0
, the payoff function of firm 2

(30) is strictly less than λ0
r+2λ0

to the immediate right of p
′
l , implying that firm 2 is not playing a best

response. If α = r+λ0
r+2λ0

, p
′
< p̂2 =

λ0
λ2

implies that the payoff function of firm 2 (30) drops below λ0
r+2λ0

to the immediate right of p
′
, so that firm 2 is not playing a best response in some right-neighbourhood

of p
′
.

By the same token, let p′′l be the lowest belief in (λ0
λ1
, p̂2) such that both firms use method S

in some right-neighbourhood of p′′l . We have already established that, in any equilibrium, either
(k1,k2) = (1,0) or (k1,k2) = (1,1) prevails throughout (p∗1, p′′l ]. Using the ODEs (29) and (33) and
the assumption α ≥ r+λ0

r+2λ0
, one can show that firm 1’s payoff satisfies v1(p′′l −)> λ0

r+2λ0
, implying firm

1 has a profitable deviation.
Now, let p′′′l be the lowest belief in (λ0

λ1
, p̂2) such that both firms use method R in some right-

neighbourhood of p′′′l . Then, firm 2’s payoff satisfies v2(p′′′l ) = vrs
2 (p′′′l ) <

αλ0(λ1+λ2)+λ1λ2 p(1−2α)
rλ2+λ0(λ1+λ2)

,
where the inequality follows from p′′′l < p̂2, implying that firm 2 has a profitable deviation.

Now, let us turn to case (2.) and suppose there exists an equilibrium with the feature that there
exists a p ∈ (λ0

λ1
, p̂2) such that (k1,k2) ̸= (1,0), and let pl = inf{p ∈ (λ0

λ1
, p̂2) : (k1,k2) ̸= (1,0)}. Thus,

v1(pl) = vrs
1 (pl) >

λ0
r+2λ0

> αλ0(λ1+λ2)+λ1λ2 p(1−2α)
rλ1+λ0(λ1+λ2)

and v2(pl) = vrs
2 (pl) <

αλ0(λ1+λ2)+λ1λ2 p(1−2α)
rλ2+λ0(λ1+λ2)

.
This implies that k1 = 1 is a strictly dominant action for firm 1 in some right-neighbourhood of pl ,
while k2 = 0 is firm 2’s unique best response in this range, a contradiction. We have thus established
that, in any equilibrium, for p ∈ (λ0

λ1
, p̂2), firm 1 uses R and 2 uses S.

We shall now argue that for all p > p̂2, using method R is the dominant action for firm 1. Sup-
pose not and let p̃ be the lowest belief in (p̂2,1) such that firm 1 uses S while firm 2 uses R in
some right-neighbourhood of p̃. Our verification arguments imply that firm 1 is not playing a best
response at beliefs just above p̃. A similar argument to above furthermore establishes that firm 1
would have a profitable deviation at the lowest belief p̃′ ∈ (p̂2,1) such that both firms use S is some
right-neighbourhood of p̃′. This shows that for all p > p̂2, using method R is the dominant action
of firm 1. From our equilibrium construction, it follows that the unique best response of firm 2 is to
choose R, which concludes the proof.
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F Payoff-Functions and Best-reponses for the General model

Closed-Form Expressions

We fix a belief p ∈ (0,1) and assume player j’s action is constant in some neighbourhood of p. (By
left-continuity of strategies, this will be the case at a.a. p.) C denotes a constant of integration.

Let k( j)
0 = k( j)

1 = 0 in a neighbourhood of p

If i’s best response is given by k(i)0 = k(i)1 = 0,

vi(p) = 0.

If i’s best response is given by k(i)0 = 1,

vi(p) =
λ0

r+λ0

A2(10α −1)
36B

− s
r+λ0

.

Remark 1 This implies immediately that, if A2(10α−1)
36B > s

λ0
, a breakthrough will occur almost surely

as t → ∞ in any equilibrium.

[The corresponding condition for the cartel’s (the utilitarian planner’s) problem is s
λ0

< A2

4B ( s
λ0

<

A2

2B).

Moreover, A2(10α−1)
36B < A2

4B (A2(10α−1)
36B = A2

4B ) if and only if α < 1 (α = 1). Thus, if and only if

α < 1, there exists a range of parameters where players give up with positive probability, while the

cartel would not. There always exists a range of parameters for which the cartel gives up with positive

probability, while a utilitarian planner would not.]

If i’s best response is given by k(i)1 = 1, vi satisfies the ODE

λi p(1− p)v′i +(r+ pλi)vi = pλi
A2(10α −1)

36B
Π− s,

which is solved by

vi(p) =−s
r

(
1− p

λi

r+λi

)
+ p

λi

r+λi

A2(10α −1)
36B

Π+Cµ̄i(p),

where we write µ̄i(p) = (1− p)
(

1−p
p

) r
λi .

40



Let k( j)
0 = 1 in a neighbourhood of p

If i’s best response is given by k(i)0 = k(i)1 = 0,

vi(p) =
λ0

r+λ0

2A2(1−α)

9B
.

If i’s best response is given by k(i)0 = 1,

vi(p) =
λ0

r+2λ0

A2(7+2α)

36B
− s

r+2λ0
.

If i’s best response is given by k(i)1 = 1, vi satisfies the ODE

λi p(1− p)v′i +(r+λ0 +λi p)vi = λi p
A2(10α −1)

36B
Π+λ0

2A2(1−α)

9B
− s,

which is solved by

vi(p) =
(

λ0

r+λ0

2A2(1−α)

9B
− s

r+λ0

)(
1− pλi

r+λ0 +λi

)
+

pλiΠ
r+λ0 +λi

A2(10α −1)
36B

+Cµi(p),

where µi(p) = (1− p)
(

1−p
p

) r+λ0
λi .

Let k( j)
1 = 1 in a neighbourhood of p

If i’s best response is given by k(i)0 = k(i)1 = 0, vi satisfies the ODE

λ j p(1− p)v′i +(r+ pλ j)vi = pλ j
2A2(1−α)

9B
Π,

which is solved by

vi(p) =
λ j

λ j + r
p

2A2(1−α)

9B
Π+Cµ̄ j(p).

If i’s best response is given by k(i)0 = 1, vi satisfies the ODE

λ j p(1− p)v′i +(r+λ0 +λ j p)vi = λ0
A2(10α −1)

36B
+λ j p

2A2(1−α)

9B
Π− s,
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which is solved by

vi(p) =
1

r+λ0

(
λ0

A2(10α −1)
36B

− s
)(

1−
λ j p

r+λ0 +λ j

)
+

λ j p
r+λ0 +λ j

2A2(1−α)

9B
Π+Cµ j(p).

If i’s best response is given by k(i)1 = 1, vi satisfies the ODE

(λi +λ j)p(1− p)v′i +(r+(λi +λ j)p)vi = pΠ
[

λi
A2(10α −1)

36B
+λ j

2A2(1−α)

9B

]
− s,

which is solved by

vi(p) =−s
r

(
1−

p(λi +λ j)

r+λi +λ j

)
+

pΠ
r+λi +λ j

[
λi

A2(10α −1)
36B

+λ j
2A2(1−α)

9B

]
+Cµ(p),

where µ(p) = (1− p)
(

1−p
p

) r
λi+λ j .

Best-Response Analysis

Let k( j)
0 = k( j)

1 = 0 in a neighbourhood of p

i’s best response is given by k(i)0 = k(i)1 = 0 if and only if

λ0
A2(10α −1)

36B
≤ s

and
p ≤ s

λi
A2Π(10α−1)

36B

.

i’s best response is given by k(i)0 = 1 if and only if

λ0
A2(10α −1)

36B
≥ s

and

p ≤ λ0

λi

r
r+λ0

A2(10α−1)
36B + s

r(
Π− λ0

r+λ0

)
A2(10α−1)

36B + s
r+λ0

.
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i’s best response is given by k(i)1 = 1 if and only if

vi(p)≥ max
{

0,
λ0

r+λ0

A2(10α −1)
36B

− s
r+λ0

}
.

Let k( j)
0 = 1 in a neighbourhood of p

i’s best response is given by k(i)0 = k(i)1 = 0 if and only if

λ0

r+λ0

A2

36B
((10α −1)r+(18α −9)λ0)≤ s

and
p ≤ s

λi
A2

9B

(
Π(10α−1)

4 − 2λ0(1−α)
r+λ0

) .
i’s best response is given by k(i)0 = 1 if and only if

λ0

r+λ0

A2

36B
((10α −1)r+(18α −9)λ0)≥ s

and

p≤ λ0

λi

A2(10α−1)
36B − λ0

r+2λ0

A2(7+2α)
36B + s

r+2λ0

ΠA2(10α−1)
36B − λ0

r+2λ0

A2(7+2α)
36B + s

r+2λ0

=
λ0

λ1

A2[9λ0(2α −1)+ r(10α −1)]+36Bs
A2[λ0(−7−2α −2Π+20αΠ)+Πr(10α −1)]+36Bs

.

i’s best response is given by k(i)1 = 1 if and only if

vi(p)≥ max
{

λ0

r+λ0

2A2(1−α)

9B
,

λ0

r+2λ0

A2(7+2α)

36B
− s

r+2λ0

}
.

Let k( j)
1 = 1 in a neighbourhood of p

i’s best response is given by k(i)0 = k(i)1 = 0 if and only if

A2(10α −1)
36B

− s
λ0

≤ vi(p)≤
λ j

λi

s
r
−

λ j

r
p

A2Π
4B

(2α −1).

i’s best response is given by k(i)0 = 1 if and only if

vi(p)≤min
{

A2(10α −1)
36B

− s
λ0

,
A2

36B
λ0(λi +λ j)(10α −1)−λiλ j pΠ(18α −9)

rλi +λ0(λi +λ j)
− λi

rλi +λ0(λi +λ j)
s
}
.
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i’s best response is given by k(i)1 = 1 if and only if

vi(p)≥max
{

λ j

λi

s
r
−

λ j

r
p

A2Π
4B

(2α −1),
A2

36B
λ0(λi +λ j)(10α −1)−λiλ j pΠ(18α −9)

rλi +λ0(λi +λ j)
− λi

rλi +λ0(λi +λ j)
s
}

.

G Proof of Proposition 5

We begin the proof by observing that s
λ0

< A2

9B
λ2r

λ0λ1+λ2r implies s
λ0

< A2

9B , so that for all α ∈ (1
2 ,1], we

have s
λ0

< A2

36B(10α − 1). Hence, for all levels of patent protection, the established method S is not

dominated. Further, s
λ0

< A2

9B
λ2r

λ0λ1+λ2r also ensures that, for a given level of patent protection α , if
firm j is using R at a belief p, then it is optimal for firm i ̸= j to use R at p as well, if and only if
vi(p)≥ ψi(p) where

ψi(p) =
A2

36B
λ0(λ1 +λ2)(10α −1)−9λ1λ2 p(2α −1)

rλi +λ0(λ1 +λ2)
− λis

rλi +λ0(λ1 +λ2)
. (35)

On the other hand, for a given value of α , if firm j is using S at p, then it is optimal for firm i to use
R at p if and only if vi(p)≥ vss, where

vss =
λ0

r+2λ0

A2

36B
(7+2α)− s

r+2λ0
(36)

denotes the payoff to a firm when both firms adopt the method R. The proposed strategies imply a
well-defined law of motion of the posterior belief, and lead to the following payoff functions:

v1(p)=



− s
r (1−

p(λ1+λ2)
r+λ1+λ2

)+ p
r+λ1+λ2

[λ1
A2

36B(10α −1)+λ2
2A2(1−α)

9B ]+Crr
1 µ(p) ≡ vrr

1 (p)

if p ∈ (p2(α),1]

( λ0
r+λ0

2A2(1−α)
9B − s

r+λ0
)(1− pλ1

r+λ0+λ1
)+ λ1 p

r+λ0+λ1

A2(10α−1)
36B +Crs

1 µ1(p) ≡ vrs
1 (p)

if p ∈ (λ0
λ1
, p2(α)]

A2

36B
λ0

r+2λ0
(7+2α)− s

r+2λ0
≡ vss

if p ∈ (0, λ0
λ1
],

(37)
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v2(p)=



− s
r (1−

p(λ1+λ2)
r+λ1+λ2

)+ p
r+λ1+λ2

[λ2
A2

36B(10α −1)+λ1
2A2(1−α)

9B ]+Crr
2 µ(p) ≡ vrr

2 (p)

if p ∈ (p2(α),1]

( λ0
r+λ0

A2(10α−1)
36B − s

r+λ0
)(1− pλ1

r+λ0+λ1
)+ λ1 p

r+λ0+λ1

2A2(1−α)
9B +Crs

2 µ1(p) ≡ vrs
2 (p)

if p ∈ (λ0
λ1
, p2(α)]

A2

36B
λ0

r+2λ0
(7+2α)− s

r+2λ0
≡ vss

if p ∈ (0, λ0
λ1
],

(38)
vrs

1 satisfies the following ODE:

λ1 p(1− p)v
′
1 +(r+λ0 +λ1 p)v1 = λ1 p

A2

36B
(10α −1)+λ0

2A2

9B
(1−α)− s.

The constant of integration Crs
1 is determined from vrs

1 (
λ0
λ1
) = vss. This immediately implies Crs

1 > 0 as

λ1 > λ0 and α ≥ 1
2 . Direct computation shows that vrs′

1 (λ0
λ1
+) = 0.

The value matching condition vrs
2 (

λ0
λ1
) = vss determines the constant of integration Crs

2 . vrs
2 satisfies

the ODE:

λ1 p(1− p)v
′
2 +(r+λ0 +λ1 p)v2 = λ0[

A2

36B
(10α −1)]+λ1 p[

2A2

9B
(1−α)]− s.

Direct computation shows that vrs′
2 (λ0

λ1
+) = 0, as well as Crs

2 < 0 if α > ᾱ , Crs
2 > 0 if α < ᾱ and

Crs
2 = 0 if α = ᾱ where ᾱ = 8r+9λ0

8r+18λ0
+ 36B

A2
s

8r+18λ0
.

Let p2(α) be the lowest belief p ∈
(

λ0
λ1
,1
)

such that F(p,α) := vrs
2 (p)−ψ2(p) = 0. We will now

show that p2(α) is well defined, i.e., that there exists a p2(α) ∈ (λ0
λ1
,1) such that F(p2(α),α) = 0.

Indeed, by direct computation, F(λ0
λ1
,α) < 0 < F(1,α), for any α ∈ [1

2 ,1]. By continuity of F , the

intermediate value theorem implies there exists a p2(α)∈ (λ0
λ1
,1) such that F(p2(α),α) = 0. As µ1 is

strictly convex, vrs
2 is [strictly] concave (convex) if and only if α ≥ ᾱ (α ≤ ᾱ) [whenever the inequality

is strict]. Further, vrs′
2 (λ0

λ1
) = 0≥ψ ′

2, with a strict inequality for α > 1
2 , and vrs′

2 (1) > ψ ′
2. It follows

that vrs
2 is [strictly] decreasing (increasing) on

(
λ0
λ1
,1
)

if and only if α ≥ ᾱ (α ≤ ᾱ) [whenever the

inequality is strict]. Thus, the point p2(α) is unique if α > 1
2 . Furthermore, the point of intersection

p2(α) is also unique if α = 1
2 , as vrs

2 is strictly convex, and thus strictly increasing on
(

λ0
λ1
,1
)

, in this
case.

For p ∈ (p2(α),1), v2 = vrr
2 and v2 satisfies the ODE

(λ1 +λ2)p(1− p)v
′
2 +(r+(λ1 +λ2)p)v2 = p

[
λ2

A2

36B
(10α −1)+λ1 p

2A2

9B
(1−α)

]
− s. (39)
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As we have seen above, vrs
2 is increasing (decreasing) if and only if α ≤ ᾱ (α ≥ ᾱ). By (39), this

observation directly implies that p2(α)≥ λ0
λ2

(p2(α)≤ λ0
λ2

) if and only if α ≤ ᾱ (α ≥ ᾱ), with equality
if and only if α = ᾱ .

By the relevant ODEs, direct computation shows that v2 is smooth at p = p2(α), i.e vrs′
2 (p2(α)) =

vrr′
2 (p2(α)). By the definition of p2(α), v2 intersects ψ2 from below at p2(α). The closed-form

expression for vrr
2 implies that it is either globally concave or globally convex. Since vrr′

2 (1)> 0≥ψ ′
2,

v2 is always above ψ2 for all p > p2(α). This establishes that firm 2 is playing a best response on
(p2(α),1] in the conjectured equilibrium.

We will now establish the best response of firm 1. For p ∈ (0, λ0
λ1
), v1 =

λ0
r+2λ0

A2

36B(10α −1)≡ vss,
implying firm 1 is playing a best response. Since vrs

1 is strictly convex and vrs′
1 (p1) = 0, for all

p ∈ (λ0
λ1
, p2(α)], v1 = vrs

1 > λ0
r+2λ0

A2

36B(10α − 1). This implies that firm 1’s action constitutes a best
response on p ∈ (p1, p2(α)]. Finally, we consider the range (p2(α),1]. Define ṽ1(p) by

ṽ1(p) =−s
r

(
1− p(λ1 +λ2)

r+λ1 +λ2

)
p

r+λ1 +λ2
[λ1

A2

36B
(10α −1)+λ2

2A2

9B
(1−α)]+C̃µ(p),

where C̃ is such that ṽ1(p2(α)) = vss. If ṽ1(p
′
) = vss, then, by the relevant ODE, ṽ1

′
(p

′
) ≥ 0 if and

only if p
′ ≥ p̌(α), where

p̌(α) :=
rλ0(7+2α)+ 72B

A2 λ0s

9λ0(2α −1)(λ1 −λ2)+ r(λ1(10α −1)+λ28(1−α))+ 36B
A2 (λ1 +λ2)s

.

One verifies that p̌(α) < λ0
λ2

for all α ∈ [1
2 ,1], and that p̌(α) < λ0

λ1
if and only if α > ᾱ . As for

α ≤ ᾱ , p2(α) ≥ λ0
λ2

, we can conclude that ṽ′1(p2(α)) > 0. Since vrr
1 (p2(α)) = vrs

1 (p2(α)) > vss, we
can conclude that vrr

1 > ṽ1 on [p2(α),1).
Consider first the case α > ᾱ . We know that vrs

2 is strictly decreasing on (p1, p2(α)]. Since
vrs

2 (p2(α)) = ψ2(p2(α)), we have vrs
1 > vss = ṽ1 > vrs

2 = ψ2(p2(α)) > ψ1(p2(α)) as λ1 > λ2. As
ψ1 is strictly decreasing in p, we have ṽ1 > ψ1 for all p > p2(α). This implies vrr

1 > ṽ1 > ψ1 for all
p > p2(α).

Next, consider α≤ᾱ . Direct computation shows that vss −ψ1(
λ0
λ1
) is strictly decreasing in α and

vss −ψ1(
λ0
λ1
)=0 at α = ᾱ . This implies that, for all α≤ᾱ , vss −ψ1(

λ0
λ1
)≥0.

Since ψ1 is strictly decreasing in p, ṽ1(p2(α)) = vss > ψ1(p2(α)), and, therefore, vrr
1 (p) ≥

ṽ1(p)> ψ1(p) for all p ∈ [p2(α),1].
Direct computation shows that ∂F

∂ p > 0, so that the sign of d p2
dα is the opposite of the sign of ∂F

∂α .
Direct computation shows that ∂F

∂α (p,α) is independent of α and a strictly increasing continuous
function of p, which is strictly negative at p = λ0

λ1
, and strictly positive at p = λ0

λ2
. Thus, there exists a

unique p̃ ∈
(

λ0
λ1
, λ0

λ2

)
such that ∂F

∂α switches its sign from negative to positive as p increases to p̃. Now
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suppose there exists an α̂ ∈ (ᾱ,1] such that p2(α̂) = p̃. Then, ∂F
∂α (p2(α̂), α̂) = 0. As α̂ > ᾱ , p̃ < λ0

λ2
.

Since all higher derivatives of this function of α are also 0 at α̂ , it follows that p2(
1
2)= p2(α̂)= p̃. Yet,

as ᾱ > 1
2 , p2(

1
2)>

λ0
λ2

, this leads to the following chain of inequalities: λ0
λ2

< p2(
1
2) = p2(α̂) = p̃ < λ0

λ2
,

a contradiction.

H Proof of Proposition 6

Proof is constructive. We are constructing an equilibrium in cutoff strategies with the same structure
as in our baseline model (Theorem 1). In this putative equilibrium, the more productive firm uses
a more pessimistic threshold. Thus, there exist thresholds p < p̄ such that both firms use method
S on [0, p], firm 1 (2) uses R (S) on p ∈ (p, p̄] and both firms use R on (p̄,1]. We conjecture p =

s

λ1
A2(10α−1)

36B

. It remains to show that these actions constitute mutual best responses. By substituting

Π = 1 in (13) we obtain the best response line for player i (against a player j who uses method R) as
ψi =

λ j
λi

s
r −

λ j
r p A2

4B(2α −1).
In the conjectured equilibrium, for p ∈ (p, p̄], the payoff of firm 1 is given by

vrs
1 (p) =−s

r

(
1− p

λ1

r+λ1

)
+ p

λ1

r+λ1

A2(10α −1)
36B

+Cµ̄1(p),

where C is a constant of integration defined by vrs
1 (p) = 0. Direct computation shows that the smooth-

pasting condition vrs′
1 (p) = 0 is satisfied for p = s

λ1
A2(10α−1)

36B

, and that vrs
1 is strictly convex. Firm 2’s

payoff in this range is given by

vrs
2 (p) =

λ1

λ1 + r
2A2(1−α)

9B

[
p− p

µ̄1(p)
µ̄1(p)

]
.

vrs
2 is (strictly) increasing (if α < 1), while ψ2 is strictly decreasing, in p. Since at p̄, firm 2 optimally

decides to start researching using R, we have ψ2(p̄) = vrs
2 (p̄). To show that such a p̄ indeed exists, we

argue that ψ2(p)> 0 = vrs
2 (p), and vrs

2 (1)≥ ψ2(1) if and only if A2

36B

[
8 1−α

λ1+r +92α−1
r

]
≥ s

λ2r . Hence,
p̄ is well defined, if and only if this inequality holds.

For a given value of s, define α1 such that A2

36B

[
81−α1

λ1+r +92α1−1
r

]
= s

λ2r , and define α∗=max{1
2 ,α1}.

Since A2

36B

[
8 1−α

λ1+r +92α−1
r

]
is strictly increasing in α , for all α >α∗, we will have A2

36B

[
8 1−α

λ1+r +92α−1
r

]
>

s
λ2

. The assumption s
λ2

< A2

4B ensures that α1 < 1.
Next, define p

′
1 by vrs

1 (p
′
1) = ψ1(p

′
1) and p̌1 by ψ1(p̌1) = 0, i.e., p̌1 =

s

λ1
A2(2α−1)

4B

. As argued before,

given that p̄ is well defined, an equilibrium in cutoff strategies exists if p
′
1 < p̄.

For α = 1, we have p̌1 = p. As α → 1, p̌1 → p from the right. ψ1 is strictly decreasing, vrs
1 (p) = 0
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and vrs
1 is strictly increasing and convex. Thus, for α = 1, p̌1 = p = p

′
1, while vrs

2 = 0. Hence, p̄

satisfies ψ2(p̄) = 0. This gives us p̄ = s

λ2
A2(2α−1)

4B

. This implies p̄ > p = p
′
1 for α = 1. Thus, by

continuity, there exists a α2 < 1 such that, for all α > α2, p
′
1 < p̄.

Define ᾱ =max{α∗,α2}. Thus for all α > ᾱ , p̄ is well defined and p
′
1 < p̄, implying our strategies

do in fact constitute an equilibrium in cutoff strategies.

I Proof of Proposition 7

Method R is most attractive when p = 1; i.e., if, in some equilibrium, both firms use method R for
some beliefs, they will do so at p = 1. Thus, suppose that p = 1 and that both firms choose R in
some equilibrium. This means that firm 2’ s payoff is equal to A2

36B
[(10α−1)λ2+8(1−α)λ1]

r+λ2+λ1
− s

r+λ1+λ2
≡

X . If firm 2 unilaterally deviates, it gets A2

9B2(1−α) λ1
r+λ1

≡ Y . Direct computation shows that for

α = 1, Y −X < 0, and for α = 1
2 , Y −X > 0 as s > r

r+λ1
λ2

A2

9B . Since Y −X is strictly decreasing
in α , there exists an α ′ ∈ (1

2 ,1), such that for α > α ′
, Y − X < 0. As λ1 > λ2, for α > α ′

, we
have A2

36B
[(10α−1)λ1+8(1−α)λ2]

r+λ2+λ1
− s

r+λ1+λ2
> A2

9B2(1−α) λ2
r+λ2

as well, so that playing R is firm 1’s best
response to firm 2’s playing R. Thus, we can conclude that, for α > α ′

, both firms choosing R

constitute mutual best responses. Hence, for both firms to choose R for some range of beliefs, it is
necessary that α > α ′ > 1

2 .

J Proof of Proposition 8

In the current proof we will write the payoffs as function of both α and p.

vrs
2 (α, p) =

λ0α
r+λ0

+
λ1 p

r+λ0 +λ1
[1−α − αλ0

r+λ0
]+C(1− p)[

1− p
p

]
r+λ0

λ1

⇒ vrs′
2 (α , p) =

λ1

r+λ0 +λ1
[1−α − αλ0

r+λ0
]−C[

1− p
p

]
r+λ0

λ1 {1+
r+λ0

λ1 p
}

Let λ1
r+λ0+λ1

[1−α − αλ0
r+λ0

] = D and [1−p
p ]

r+λ0
λ1 {1+ r+λ0

λ1 p } = Γ(p). D is strictly decreasing in α , and
Γ(p) is a strictly decreasing function of p and independent of α . We know from our previous analysis
that at p∗1 =

λ0
λ1

, irrespective of the value of α , vrs
2 = λ0

r+2λ0
and vrs′

2 (p∗1) = 0. This implies we have

vrs′
2 (α, p∗1) = D−CΓ(p∗1) = 0 ⇒C =

D
Γ(p∗1)
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This implies for all p > p∗1, we have

vrs′
2 (p) = D− D

Γ(p∗1)
Γ(p) = D(1− Γ(p)

Γ(p∗1)
)

Since Γ(p) is strictly decreasing in p, Γ(p)
Γ(p∗1)

< 1 for all p > p∗1. As D is strictly decreasing in α , we

can infer that for all p > p∗1, vrs′
2 (α1, p) < vrs′

2 (α2, p) if α1 > α2. Since for all α , vrs
2 (α, p∗1) =

λ0
r+2λ0

and vrs′
2 (p∗1) = 0, we can infer that for any p > p∗1, vrs

2 (α1, p)< vrs
2 (α2, p) if α1 > α2.

We have
vrr

2 (α , p) =
αλ2 +(1−α)λ1

r+λ1 +λ2
p+C(1− p)[

1− p
p

]
r

λ1+λ2

where C is an integration constant. Let αλ2+(1−α)λ1
r+λ1+λ2

= X(α). X is decreasing in α as λ1 > λ2

For p ≥ p∗1, we have v2(α , p) as

v2(α, p) =

{
vrr

2 (α , p) if p ∈ (p̂2(α),1],
vrs

2 (α, p) if p ∈ (λ0
λ1
, p̂2(α)]

We will prove that if α1 > α2, v2(α1, p)< v2(α2, p) for all p > p∗1.
Monotonicity of p̂2 with respect to α implies p̂2(α1)< p̂2(α2).
Since for all p > p∗1, vrs

2 (α1, p) < vrs
2 (α2, p), for all p ∈ (p∗1, p̂2(α1)], v2(α1, p) = vrs

2 (α1, p) <

vrs
2 (α2, p) = v2(α2, p)

Suppose ṽ2
rr(α2) be such that ṽ2

rr(α2, p̂2(α1))= vrs
2 (α2, p̂2(α1)) and v̄2

rr(α2) be such that v̄2
rr(α2, p̂2(α1))=

vrs
2 (α1, p̂2(α1)). Since vrs

2 (α2, p̂2(α1))> vrs
2 (α1, p̂2(α1)), for all p > p̂2(α1) we shall have v̄2

rr < ṽ2
rr.

Next, we have vrr
2 (α1, p̂2(α1)) = vrs

2 (α1, p̂2(α1)) = v̄2
rr(α2, p̂2(α1)). We have

vrr′
2 (α , p) = Xα −Cα [

1− p
p

]
r

λ1+λ2 [1+
r

(λ1 +λ2)p
]

Since Xα is decreasing in α , we have Xα1 < X̄α2 . Then vrr
2 (α1, p̂2(α1)) = v̄2

rr(α2, p̂2(α1)) im-
plies Cα1 > C̄α2 . From the expression of vrr′

2 we can now conclude that for all p > p̂2(α1) we
have v̄2

rr′(α2) > vrr′
2 (α1). This implies vrr

2 (α1, p) < v̄2
rr(α2, p) for all p > p̂2(α1). Hence, for all

p > p̂2(α1), we have vrr
2 (α1, p)< ṽ2

rr(α2, p).
One can also conclude from here that vrr

2 (α1) can never intersect vrr
2 (α2) from below. This is

because if at a p, vrr
2 (α1) = vrr

2 (α2), since X is decreasing in α , we must have Cα1 > Cα2 and hence
for all p we have vrr′

2 (α1)< vrr′
2 (α2).

For α = α2, in equilibrium, given firm 1 is using the innovtive method, firm 2 finds it optimal to
use S for all p∈ (p∗1, p̂2(α2)). This means for all p∈ (p̂2(α1), p̂2(α2)), if ṽ2

rr(α2) = vrs
2 (α2), the slope

of ṽ2
rr(α2) is lower than that of vrs

2 (α2). This implies we must have ṽ2
rr(α2) lying below vrs

2 (α2) for
all p ∈ (p̂2(α1), p̂2(α2)). Hence for all p ∈ (p̂2(α1), p̂2(α2)), vrr

2 (α1)< vrs
2 (α2). Since vrr

2 (α1) cannot
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intersect vrr
2 (α2) from below, we have vrr

2 (α1, p) < vrr
2 (α2, p) for all p > p̂2(α2). This concludes the

proof.

K Proof of Proposition 9

We will first show that there does not exist an equilibrium in cutoff strategies such that firms use
different thresholds and the more productive firm uses a more pessimistic threshold. Suppose to the
contrary that there exist thresholds p < p̄ such that both firms use method S on [0, p], firm 1 (2) uses R

(S) on (p, p̄] and both firms use R on (p̄,1], and these actions constitute mutual best responses. Since

firm 1 optimally switches to method S from R at p, we have p = λ0
λ1

[ 10α−1− λ0
r+2λ0

(7+2α)

Π(10α−1)− λ0
r+2λ0

(7+2α)

]
. In the

conjectured equilibrium,
p̄ is implicitly defined by vrs

2 (p̄) = ψ2(p̄).
For α > 1

2 and Π > 1, vrs′
2 (p)> 0 = vrs′

1 (p) and vrs
1 is strictly convex on [p,1). Direct computation

via the relevant ODEs shows that vrs
1 can only intersect vrs

2 from the above (below) at a belief p is
p < (>) λ0

λ1Π .
We define p

′
1 to be the belief such that vrs

1 (p
′
1) = ψ1(p

′
1). Consider λ1 → λ2 = λ > λ0. In this

case, ψi → ψ = A2

36B
2λ0(10α−1)−λΠ[18α−9]p

r+2λ0
. Since ψ( λ0

λ1Π) = vss, we can infer that p̄ < p
′
1 < λ0

λ1Π .
This implies that the method R becomes dominant for firm 2 at a belief which is strictly lower than
the belief at which R becomes dominant for firm 1. Hence, the conjectured equilibrium in cutoff
strategies cannot exist.

We will now argue that there does not exist any equilibrium in cutoff strategies where either firm
uses the same threshold or the less productive firm uses a more pessimistic threshold.

Suppose there exists an equilibrium in cutoff strategies where both players use the same threshold
p̃. There are two possibilities:

1. p̃ > p: In this case, for all p ≤ p̃, v1 = v2 = vss. However, from our previous analysis, we know
that the more productive firm would have an incentive to deviate in some right-neighbourhood of p.
Hence, we cannot have p̃ > p.

2. p̃ ≤ p: If this is indeed an equilibrium, then at p = p̃ we shall have v1 = v2 = vss and,in some
right neighborhood of p̃, we must have ψ2 ≤ vss. Otherwise, firm 2 is not playing a best response in
that right neighborhood of p̃.

We first evaluate ψ2 − vss at p = λ0
λ1Π . Direct computation shows that, at p = λ0

λ1Π , we have

ψ2 − vss =
λ0A2

36B
{10αλ1 −8αλ2 +8λ2 −λ1

rλ2 +λ0(λ1 +λ2)
− 7+2α

r+2λ0
}

= (λ1 −λ2)[r(10α −1)+9λ0(2α −1)]> 0
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Since ψ2 is strictly decreasing in p, and p̃ ≤ p < λ0
λ1Π , in some right neighborhood of p̃, we have

ψ2 > vss. Hence, we cannot have a symmetric equilibrium with a cutoff p̃≤ p if firms are asymmetric.
Hence, we can conclude that a symmetric equilibrium in cutoff strategies does not exist.

Next, we will show that no equilibrium in cutoff strategies exists such that the less productive
player uses a more pessimistic cutoff. Suppose there exists such an equilibrium, i.e., firm 2 leaves
method R at a more pessimistic belief. This means that firm 2 is the last firm to use R, and hence

it optimally switches to S at a belief p̃ = λ0
λ2
[
(10α−1)− λ0

r+2λ0
(7+2α)

(10α−1)Π− λ0
r+2λ0

(7+2α)
]. Since p̃ > p in this conjectured

equilibrium, both firms will use the method S in some right-neighbourhood of p, where both firms’
value will equal vss—implying that firm 1 has an incentive to deviate in some right-neighbourhood of
p. Hence, the conjectured equilibrium does not exist.

L Proof of Proposition 10

We will first show that for extremely asymmetric firms, for high values of r, ψ1 is strictly below vss for
all p. To see this, first consider λ0 < λ1, and λ1 → ∞ for a given value of λ2, λ0 and other parameters.
From the expression of ψ1, we see that ψ1 → A2

36B
λ0(10α−1)−λ2Π[18α−9]p

r+λ0
.

Next, suppose λ0 > λ1. For given values of λ0 and λ1, consider values of Π such that, as λ2 → 0,
λ2Π remain constant. Direct computation shows that the limiting value of ψ1 in this case is same as
in the preceding paragraph.

At p = 0, the limiting value of ψ1 =
A2

36B
λ0(10α−1)

r+λ0
≡ ψ1. Direct computation shows

vss −ψ1 =
λ0A2

36B
[
7+2α
r+2λ0

− (10α −1)
r+λ0

]> 0

for all r ≥ 9λ0(2α−1)
8(1−α) ≡ r̄(α). Since ψ1 is strictly negatively sloped, we can conclude that, as λ1 → ∞,

for all p, ψ1 is strictly below vss.
Next, we will show that, for extremely asymmetric firms, for any value of r, ψ2 is strictly higher

than vss at p = p. From the expression of ψ2, we can infer that its limiting value as λ1 → ∞ is the
same as the limiting value forλ2 → 0 such that λ2π remain constant. This common limiting value is
equal to A2

36B
λ0(10α−1)−λ2Π[18α−9]p

λ0
, which at p = 0 is equal to A2

36B(10α −1)≡ ψ2. Direct computation
shows

ψ2−vss =
A2

36B
[
2α [5r+9λ0]− [r+9λ0]

(r+2λ0)
>

A2

36B
[
2α [r+9λ0]− [r+9λ0]

(r+2λ0)
=

A2

36B
[
[r+9λ0](2α −1)

(r+2λ0)
≥ 0

Hence, as λ1 → ∞, or λ2 → 0 s.t. λ2Π remaining constant, ψ2(p)> vss. This ensures that p̄ is bounded
above p for highly hetereogeneous firms.
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In any conjectured equilibrium in cutoff strategies, v1 is greater than or equal to vss for all p.
Hence, we can conclude that, for r ≥ r̄(α),

1. If λ1 > λ0, we can find a λ̄1 > λ2 such that, for all λ1 > λ̄1, p
′
1 < p̄ implying the existence of

an equilibrium in cutoff strategies.
2. If λ1 < λ0, we can find a λ̄2 ∈ (0,λ1) such that for all λ2 < λ̄2, p

′
1 < p̄ implying the existence

of an equilibrium in cutoff strategies.
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