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Abstract

This paper analyses a two-player game with two-armed exponential bandits.

A player experiences publicly observable arrivals by pulling the safe arm. On the

other hand, a player operating a good risky arm experiences publicly observable

arrivals at an intensity greater than that in the safe arm. In addition, a player

pulling the risky arm can also privately learn about its quality. With direct

payoff externalities and private learning, we construct a symmetric Markov

equilibrium where, depending on the initial optimism about the quality of the

risky arm, we can have either too much or too little experimentation.
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1 Introduction

In many real-life situations, information generated by one agent is payoff relevant to

other agents as well. For example, consider two pharmaceutical companies trying

to invent a drug for the same disease. One company’s outcome of the clinical trials

using a novel target can influence the decision-making of another company. Pharma

companies operate in a competitive environment and carry out R&D activities to

become the first inventor of a new drug, because the company inventing the drug first

can apply for a patent and hence will get a disproportionately higher payoff than the

later inventors. Such a game of both informational and payoff externalities can be

analysed using a two-armed bandit model.

To date, the literature on strategic experimentation with two-armed bandit models

has mostly considered cases in which all outcomes and actions are publicly observ-

able. However, in some situations, one of the pharma companies can learn some

outcome of its clinical trial process privately. Booth and Zemmel (2004) found that

many pharma companies, for clinical trials incline to opt for the novel targets discov-

ered from the human genome project and computational analysis methods. Hence,

companies are shifting their discovery portfolio more toward these riskier alternatives,

and are abandoning the risk-adjusted systematic project-development processes. One

possible reason can be that the science behind these riskier candidates is novel and

attractive. In the context of pharmaceutical rese arch, pharma companies often have

many pre-clinical trials whose results are private to them. The influence of these pri-

vate observations on the decision of a company to choose riskier alternatives is worth

exploring. This paper provides a stylised model to analyse the impact of private

learning in a game of strategic experimentation with two-armed exponential bandits

under competition.

The key features of this paper’s framework are as follows: (i) Two players, each of

whom has access to an identical two-armed bandit: The safe arm, when pulled, gener-

ates publicly observable arrivals at random times, which are exponentially distributed

with a given level of intensity. The risky arm can either be good or bad. When a good

risky arm is pulled, it generates publicly observable arrivals. The arrival times are

exponentially distributed with a level of intensity higher than that in the safe arm.

A novel characteristic of the model is that the good risky arm also independently

generates arrivals, which are only privately observable to the player who is pulling it.
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(ii) Initially, the type of the risky arm is not known: Players share a common prior

belief about it. (iii) Payoff only from the first publicly observable arrival: This feature

of the model incorporates competition or payoff externalities. Private arrival does not

yield any payoff. The game ends after the first publicly observable arrival. (iv) All

actions are publicly observable: Based on these actions and the publicly observable

arrivals, each player updates its beliefs. As evident, because of private learning, pub-

lic and private beliefs may diverge. (v) Switching between arms is almost costless:

If a player switches arms, the decision can be revoked in a finite time duration of

arbitrarily small length.

The main findings of the paper are the following:

• A symmetric Markov equilibrium exists: If the intensity of private arrival is

below a threshold, an equilibrium exists where, conditional on no arrival, each

player pulls the risky arm as long as the private belief about the quality of the

risky arm is higher than a threshold.

• Excessive (Inadequate) use of the risky arm for high priors: Compared to the

benchmark (full-information optimal), the duration of the use of the risky arm

is higher (lower) in the equilibrium constructed if the common prior is higher

(lower) than a threshold.

In a competitive environment, researchers may not always have the incentive to reveal

their interim private findings, This is because once it is revealed, nothing stops another

researcher from using that interim result. The use of this intertim result might lead to

the other researcher becoming the first to make the final innovation.1 In this paper,

we construct an equilibrium where, although players explicitly do not reveal their

interim private findings, it is implicitly conveyed through the equilibrium behaviour,

because a player receiving a private signal will never use the safe arm. Because

actions are perfectly observable, when a player observes his opponent not switching

arms when he is supposed to, he infers that the opponent has received a private

signal. If a player (say, player 2) infers his opponent (say, player 1) has experienced a

private arrival, he will react by immediately switching back to the risky arm. Because

1The incidence of private learning before the final success of innovation is also relevant in the
academic world. In this context, the proof of Fermat’s last theorem by Sir Andrew Wiles is worth
mentioning. This theorem was proved over a span of seven years in complete secrecy, and in between,
he did not reveal any of the interim findings.
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private information is not directly payoff relevant, player 2 can reap the benefit of

player 1’s private breakthrough. This characteristic brings free-riding in an implicit

manner. In the constructed equilibrium, players’ actions are of the threshold type,

and the threshold is common across the players. From the analysis of Keller, Rady and

Cripps (2005), we know that because of free-riding, we do not get an equilibrium

where players’ actions are of the threshold (common) type. In the current model,

because the implicit free-riding is due to private arrivals, to ensure the existence of

the equilibrium, we need to keep the intensity of the private arrivals within a limit.

This intuitively explains the condition for the existence of the equilibrium.

A novel feature of the results obtained in this paper is that in the equilibrium

constructed, both too much or too little experimentation can occur, depending on

the initial optimism about the quality of the risky arm. When a player is pulling

the risky arm, his opponent always knows that with some probability, the player will

experience a private arrival. This makes the movement of the public belief sluggish

compared to the benchmark case. Therefore, too much experimentation tends to

occur in equilibrium compared to the benchmark. On the other hand, an implicit

free-riding effect tends to lower the extent of experimentation in the equilibrium.

When the likelihood of the risky arm being good is high, the former effect dominates,

and we have too much experimentation. Otherwise, the latter effect dominates, and

we have too little experimentation.

Related Literature: This paper contributes to the currently nascent literature

on private learning in models of experimentation. Some recent related papers on

this topic are Akcigit and Liu (2015), Heidhues, Rady and Strack (2015), Guo and

Roesler (2016), Bimpikis and Drakupoulos (2014), Dong (2017), and Thomas

(2018).

Akcigit and Liu (2015) analyse a two-armed bandit model with one risky and one

safe arm. The risky arm could lead to a dead end. Thus, private information is in the

form of bad news. Inefficiency arises from the fact that wasteful dead-end replication

and early abandonment of the risky project can occur. In the current paper, private

information is in the form of good news about the risky arm. However, the present

paper shows that early abandonment of the risky project can still happen if, to start

with, players are not too optimistic about the quality of the risky line. Further, in

the current paper, we have learning even in the absence of information asymmetry.

Heidhues, Rady and Strack (2015) analyse a model of strategic experimentation
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with private payoffs. They take a two-armed bandit model with a risky arm and a

safe arm. Players observe each other’s behaviour but not the realised payoffs. They

communicate with each other via cheap talk. The free riding problem can be reduced

because of private payoffs, and conditions exist under which the cooperative solution

can be supported as a perfect Bayesian equilibrium. The present paper differs from

their work in the following ways. First, we have private arrivals of information only.

Second, players are rivals.

Guo and Roesler (2016) study a collaboration model in continuous time. In both

the good and the bad state, success can arrive at a positive rate. In the bad state,

players may get a perfectly informative signal. Players have to exert costly effort to

stay in the game, and at any time, they have the option to exit and secure a positive

payoff from an outside option. Both the probability of success and private learning

are directly related to the amount of effort exerted. An increase in the payoff from

the outside option increases collaboration among agents. Bimpikis and Drakupou-

los (2014)consider a setting in which agents experiment with an opportunity of an

unknown value. Information generated by the experimentation of an agent can be

credibly communicated to others. They identify an optimal time T > 0 such that if

agents commit not to share any information up to time T and disclose all available

information at time T , the extent of free-riding is reduced.

Dong (2017) studies a model of strategic experimentation with two symmetric

players, where all actions and outcomes are public. However, one of the players is

initially better informed about the state of nature. In the current paper, we have a

competitive environment, and through a private outcome, both players can become

privately informed. In Thomas (2018), each player can either learn privately along

his exclusive risky arm or can compete for a single safe arm. Thus, unlike the present

paper, no direct payoff externalities exist.2

This paper has important implications for the literature on patent-race games.

2 Thomas (2017) analyses a model in which a decision-maker chooses a stopping time for a
project, and she receives private information gradually over time about whether the project will
succeed. Rosenberg, Salomon and Vieille (2013) also analyses a strategic experimentation game
in which they look at the effect of varying the observability of the experimentation outcomes. The
current paper differs from theirs in three ways. First, both observable and unobservable kinds of
outcomes occur. Second, the environment is competitive. Lastly, in the current paper, switching
between arms is not irrevocable. Murto and Välimäki (2011) also consider irrevocable switching
with private outcomes of experimentation. In their model, both kinds of all risky arms are perfectly
positively correlated, and nature initially chooses the proportion of good risky arms.
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Chatterjee and Evans (2004) analyses a model in which firms compete to make a

discovery, and it can be made through one and only one of the available two meth-

ods. A prori, firms only know the likelihood of each method being the correct one.

The cost to search differs across research avenues. Depending on the prior, either too

much or too little exploration of a research avenue occurs. The current paper yields a

similar result but due to private learning. Further, we do not have a perfect negative

correlation between the research avenues. Besanko and Wu (2013) adopt the frame-

work of Keller, Rady and Cripps (2005) and study how the market structure affects

an R&D race. Their paper is about how much to invest in R&D. On the other hand,

in the current paper, we analyse how to allocate a given amount of resources among

available R&D methods. Moscarini and Squintani (2010) analyse private learning

in R&D races. In their model, the arrival rate of a firm’s invention is its private

information and shows that when the social planner is sufficiently impatient, firms’

R&D activities are inefficiently low. In the current paper, we show that along with

a commonly known arrival rate of invention, if a private signal occurs, we can have

both inefficiently low and high R&D activities.

Finally, this paper contributes to the broad literature on strategic bandits. Some

of the important papers3 in this area are Bolton and Harris (1999), Keller, Rady

and Cripps (2005), Keller and Rady (2010), Klein and Rady (2011), Klein (2013),

Keller and Rady (2015). In most of these papers, under-experimentation exists

due to free-riding, and all learning is public. Different variants of this problem have

been studied in the literature. Bonatti and Hörner (2011), in an exponential bandit

framework, study the problem of moral hazard in teams with private actions. In

Rosenberg, Solan, Vieille (2007), a switch to the safe arm is irreversible and the

role of the observability of outcomes and the correlation between risky-arm types is

analysed. In the current paper, the framework modifies the setup of Keller, Rady

and Cripps (2005) by introducing direct payoff externalities and having a purely

informational arrival along the risky arm that only the player pulling it observes. We

show that in the presence of private learning in a competitive environment, depending

on the initial prior, both too much and too little experimentation can exist in the

same model.4 Another novel feature of the current paper is that it captures a setting

3The survey by Hörner and Skrzypacz (2016) gives a comprehensive picture of the current
literature on this topic.

4 Das (2018) shows that in a competitive environment with no private learning, we have too
much experimentation.
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that is competitive and simultaneously has free-riding opportunities; the free-riding

opportunities arise from the communication of private signals through equilibrium

actions.5

The rest of the paper is organised as follows. Section 2 discusses the environment

and the full-information optimal solution. Section 3 discusses the non-cooperative

game and the nature of inefficiency. Finally, section 4 concludes.

2 The Environment

Two players (1 and 2) face a replica of a two-armed bandit in continuous time. If the

safe arm is pulled, publicly observable arrivals occur at the jumping times of a Poisson

process with intensity π0 > 0. The risky arm can either be good or bad. The quality

of the risky arm of both players is the same. When the good risky arm is pulled,

publicly observable arrivals occur at the jumping times of a Poisson process with

intensity π2 > π0. In addition, a player pulling the good risky arm can experience

privately observable arrivals according to a Poisson process with intensity π1 > 0.

Only the first publicly observable arrival (along any of the arms) yields a payoff of 1

unit.

Players start with a common prior p0, the probability with which the risky arm

is good. Players’ actions are publicly observable. At each time point, players update

their belief (private) using the public history (publicly observable arrivals and actions)

and private history. We start our analysis by examining the benchmark case in which

all information is public.

2.1 The planner’s problem: The full-information optimal so-

lution

In this sub-section, we discuss the optimisation problem of a benevolent social planner

who can completely control the actions of the players and can observe all the arrivals

they experience. This is intended to be the efficient benchmark of the model described

above.

The action of the planner at time point t is defined by kt (kt ∈ {0, 1, 2}). kt is the

5Wong (2017) also analyse competition and free-riding in the same environment. However, he
does not have private learning.
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number of players the planner makes to experiment. kt (t ≥ 0) is measurable with

respect to the information available at time point t.

Let pt be the prior at time point t. If no arrival occurs over the time interval ∆ > 0,

it must be the case that none of the players who were experimenting experienced any

arrival, because the planner can observe all arrivals. As ∆ → 0, as in Keller, Rady

and Cripps (2005), we get

dpt = −k(π1 + π2)pt(1− pt).

The longer the planner has players experimenting without any arrival, the more pes-

simistic they become about the likelihood of the risky arm being good. As soon as

the planner observes any arrival at the risky arm, the uncertainty is resolved. If it

is an arrival that would have been publicly observable in the non-cooperative game,

the game ends. For the other kind of arrival, the planner gets to know for sure that

the good risky arm is good, and makes both the players experiment until the first

publicly observable arrival.

Let v(p) be the value function of the planner. Then, along with k, it should satisfy

the following Bellman equation:

rv = max
k∈{0,1,2}

{
2π0(1−v)]+k

[
{(π1+π2)p(

π2

(π1 + π2)
+

π1

(π1 + π2)

2π2

r + 2π2

−v−(1−p)v′)}−π0(1−v)
]}
.

(1)

The solution to the planner’s problem is summarised in the following proposition.

Proposition 1 A exists a threshold belief p∗ = π0

π2+
2π1{π2−π0}

r+2π2

exists such that if the

belief p at any point is strictly greater than p∗, the planner makes both the players

experiment, and if the belief is less than or equal to p∗, the planner makes both the

players exploit the safe arm. The planner’s value function is

v(p) =

{
2π2
r+2π2

p+ [ 2π0
r+2π0

− 2π2
r+2π2

p∗]u0(p) if p > p∗

2π0
r+2π0

if p ≤ p∗,
(2)

where u0(p) = (1− p)(1−p
p

)
r

2(π1+π2) . The ODE satisfied by the planner’s problem is

displayed in Appendix B

Proof.

8



The proof follows from a standard verification argument. Please refer to Appendix

B

From the expression of p∗, we can see that in the absence of any informational

arrival (π1 = 0), the threshold is identical to the myopic belief.6 A higher rate of

informational arrival increases the incentive to experiment, and hence the belief up

to which the planner makes players experiment goes down. This effect also depends

on the difference between the public arrival rates across the safe arm and a good risky

arm, which reflects the fact that any meaningful payoff is obtained only through public

arrival.

The following section describes the non-cooperative game and constructs a par-

ticular symmetric equilibrium.

3 The non-cooperative game

In this section, we consider the non-cooperative game between the players. We restrict

ourselves to Markovian strategies. In the current context, a Markov strategy for player

i (i = 1, 2) is defined as a left-continuous function ki : [0, 1] → {0, 1}, pi 7→ ki(pi).

pi ∈ [0, 1] is the private belief of player i. Players can observe each others’ actions.

The informational arrival is privately observable to the player who experiences it.

This characteristic of the model implies that, conditional on no arrival, the private

belief of player i evolves according to

dpi,t = −[π2(ki,t + kj,t) + π1ki,t]pi,t(1− pi,t) dt.

If both players pull the risky arm for a particular time interval at a common private

belief, the above equation of motion implies that, conditional on no arrival, the private

posteriors during this interval will be identical across the players. We exploit this fact

to construct a particular equilibrium in the following subsection.

Only the first publicly observable arrival yields a payoff of 1 unit to the player

who experiences it. In the current model, inertia is present in the players’ decision

to switch between arms or change the decision to switch arms. Formally, this means

6For π1 = 0, we get back the result of the planner’s problem with homogeneous players in Das
(2018).
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that if a player shifts from one arm to another, then if he wants to shift back, he

cannot do so before a time interval η > 0. Also, if a player decides not to switch to

another arm, then to reconsider his decision, he needs a time of η > 0. In the next

subsection, we construct a particular symmetric equilibrium in Markovian strategies

when the inertia goes to zero (η → 0).

3.1 Equilibrium

In this subsection, we construct a particular symmetric Markov perfect equilibrium of

the game when the inertia η goes to zero. The features of the symmetric equilibrium

we intend to construct are as follows: (i) Players start with a common private belief

about the quality of the risky arm. (ii) Conditional on no arrival, each player pulls

the risky arm as long as the private belief is greater than a particular threshold. Note

that in the non-cooperative game, a player can observe only the public arrivals and

his private arrival only. (iii) If a player experiences a private arrival, he keeps pulling

the risky arm until a public arrival.

In this conjectured equilibrium, players’ strategies are pure and symmetric. Be-

cause actions are publicly observable, on the equilibrium path, conditional on no

arrival, players’ private beliefs will be identical. This approach is similar to the one

followed by Bergemann and Hege (2005). We first assume the existence of the con-

jectured equilibrium and determine the common threshold belief where players switch

to the safe arm from the risky arm. The following lemma does this.

Lemma 1 Suppose the symmetric Markov perfect equilibrium as conjectured above

exists. Let p∗N(p) be the threshold for switching for the prior p. If the private belief is

higher than this threshold, the player pulls the risky arm. Conditional on no arrival,

a player switches to the safe arm when the belief hits p∗N(p). We have

p∗N(p) =
π0

π2 + π1
r+2π2

(π2 − π0) r
r+π0

as the inertia η → 0

Proof. Players start with a common private belief p. Let p∗N(p) be the threshold

belief where, conditional on no arrival, both players switch to the safe arm. Given

the common prior, conditional on not experiencing any arrival, a player can always
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determine the probability with which the opponent has experienced a private arrival.

Let this probability be qp. At p∗N(p), given the other player’s strategy, each player is

indifferent between staying on the risky arm switching to the safe arm. When both

players are on the safe arm, each receives a payoff of vs = π0
r+2π0

.7 Similarly, if it is

known with certainty that the risky arm is good and both players experiment, each

gets vrg = π2
r+2π2

. Suppose a player does not experience any arrival and switches to

the safe arm as the private belief hits p∗N(p). If the opponent experiences a private

arrival, he keeps pulling the safe arm. The former player observes this and infers the

risky arm is good. He then reverts to the risky arm after the time interval η.

If a player decides to stay on the risky arm for an additional duration of η, the

payoff is

θr = (1− qp){π2pη + π1pη(1− rη)(1− π0η)
π2

r + 2π2

+(1−rη)[1−(π1+π2)pη−π0η][π0η+(1−rη)(1−π0η−π1pη−π2pη)vs+π1pη(1−rη)(1−π0η)
π2

r + 2π2

]}

+qp
π2

r + 2π2

.

If the player instead switches to the safe arm, then for the duration η, his payoff

will be

θs = (1− qp){π0η+ (1− rη)(1− 2π0η)vs}+ qp{π0η+ (1− rη)(1− (π0 +π2)η)
π2

r + 2π2

}.

At p = p∗N(p), we have θr = θs. We are constructing the equilibrium for η → 0.

Because compared to vs, we can ignore terms involving η in a multiplicative manner

when η → 0, we have π0η + (1 − rη)(1 − π0η − π1pη − π2pη)vs + π1pη(1 − rη)(1 −
π0η) π2

r+2π2
≈ vs. Similarly, we have π0η+ (1− rη)(1− (π0 + π2)η) π2

r+2π2
≈ π2

r+2π2
. After

ignoring the terms of the order η2, we get

(1− qp){π2p
∗Nη + π1p

∗Nη
π2

r + 2π2

− (π1 + π2)p∗ηvs − π0ηvs + vs − rηvs}+ qp
π2

r + 2π2

= (1− qp){π0η − 2π0ηvs + vs − rηvs}+ qp{
π2

r + 2π2

}

7 In this case, each player’s payoff is calculated as vs =
∫∞
0
e−rs π0

2π0

d(1−e−2π0s)
ds ds = π0

r+2π0
.
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⇒ p∗N{π2 + π1
π2

r + 2π2

− (π1 + π2)vs} = π0 − π0vs

Substituting the value of vs, we get

p∗N =
π0

π2 + π1
r+2π2

(π2 − π0) r
r+π0

.

This concludes the proof of the lemma.

The above lemma shows that if the conjectured equilibrium exists, the common

threshold belief is given by p∗N . We now formally state the equilibrium strategies

along with a system of beliefs (both on and off the equilibrium path) and then de-

scribe the Bellman equations of the players. Later, we establish that the proposed

equilibrium strategies and the system of beliefs together indeed constitute an equi-

librium.

Player i’s equilibrium strategy is given by

ki = 1 for p > p∗N and ki = 0 for p ≤ p∗N .

We will now describe how beliefs evolve, both on and off the equilibrium path.

Let A be the set of possible action profiles of the game. We have

A = {(R,R); (S,R); (R, S)}.

In any action profile, the ith element denotes the action of player i (i = 1, 2). Note that

we leave aside the action profile (S, S), because under this, no learning occurs. For

player i, we define zi such that zi ∈ {0, 1}. zi = 1(0) denotes that player i has (not)

experienced a private arrival. Consider player i (i = 1, 2). Suppose at an instant, his

private belief is p. Based on the public observations and private observation, player i

updates his beliefs, and this is given by the function pu(p, a, zi). As soon as a player

experiences a private arrival, all uncertainty is resolved to him. This implies that as

zi becomes equal to 1, the belief of player i jumps to 1 and stays there. Formally,

this is expressed as

pu(p, a, zi = 1) = 1

∀a ∈ A and ∀p .
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First, consider the range of beliefs p ∈ (p∗N , 1). Because players are homogeneous

and we are considering a symmetric equilibrium, without loss of generality, consider

player 1. On the equilibrium path, the action profile is a = (R,R). Conditional on

no private and public arrival, pu(p, a, z1) satisfies

dp = −p(1− p)(2π2 + π1) dt.

The above equation of motion implies a player on the equilibrium path while updating

beliefs takes into account the public history and his private observations. For both

the off-the-equilibrium path action profiles (S,R) and (R, S), conditional on no public

or private breakthrough, private beliefs of both the players evolve according to

dp = −p(1− p)(π1 + π2) dt.

Thus, if a player deviates and pulls the safe arm for a particular range of beliefs, he

updates his beliefs according to how his opponent does, conditional on no public or

private arrivals. This updating ensures that if the players start with a common prior

that is greater than p∗N , and if one of the players deviates for some time interval, the

private beliefs remain the same across the players.

Next, consider the range of beliefs p ≤ p∗N and, as before, consider player 1. For

a = (S,R) and a = (R,R), we have

pu(p, a, z1 = 0, d1 = 0) = 1.

The above equation implies if a player had not experienced any private arrival until

the time point when his private belief became equal to p∗N , and he observes his

opponent pulling the risky arm, he interprets this as the opponent receiving private

information, and hence the belief jumps to 1.

Suppose players 1’s belief jumps to 1 by observing the opponent not shifting to

the safe arm when he is supposed to. If at any point after that time, player 1 observes

his opponent pulling the safe arm, he thinks his opponent must have committed a

mistake before, and the updated belief of player 1 becomes 0. We formally express

this updating as

pu(1, a, z1 = 0, d1) = 0

for a = (R, S) and a = (S, S).
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Finally, for any p ≤ p∗N , for the action profile a = (R, S), beliefs of player 1 evolve

according to

dp = −(π1 + π2)p(1− p) dt.

This completes the description of the system of beliefs. We now compute the payoffs

of the players in the conjectured symmetric equilibrium. Both players start with a

common prior. On the equilibrium path, the actions of the players are symmetric.

For p > p∗N , given kj (j 6= i), player i’s value should satisfy

vi = max
ki∈{1,0}

{
(1− ki)π0 dt+ kip

[
π2 dt+ π1

π2

r + 2π2

dt
]
+

(1−r dt)
[
1−(2−k1−k2)π0 dt−[k1(π1+π2)p dt+k2π2p dt]

][
vi−v

′

ip(1−p)[ki(π1+π2)+kjπ2] dt]

+kjp dtπ1
π2

r + 2π2

}
.

To player i, kj is given. By ignoring the terms of the order 0( dt) and rearranging

the above, we can infer that vi along with ki satisfies the following Bellman equation:

rvi = max
ki∈{0,1}

{
(
[
π0(1−vi)

]
+ki
[
p(π1+π2){( π2

π1 + π2

+
π1

π1 + π2

π2

r + 2π2

)−vi−v
′

i(1−p)}−π0(1−vi)
]}

− (1− kj)π0vi − kj
[
pπ2vi + π2p(1− p)v

′

i

]
+ kjpπ1

π2

r + 2π2

. (3)

For p > p∗N , both players experiment. Putting ki = kj = 1 in (3), we get

v
′

i +
vi[r + (π1 + 2π2)p]

p(1− p)(π1 + 2π2)
=

π2p[r + 2π1 + 2π2]

(r + 2π2)p(1− p)(π1 + 2π2)
. (4)

Solving this O.D.E., we obtain

vi =
π2

r + 2π2

[
r + 2π1 + 2π2

r + π1 + 2π2

]p+ Cn
rr(1− p)[Λ(p)]

r
π1+2π2

⇒ vi =
π2

r + 2π2

[1 +
π1

r + π1 + 2π2

]p+ Cn
rr(1− p)[Λ(p)]

r
π1+2π2 . (5)

where Cn
rr is an integration constant and Λ(.) is as defined before. The integration
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constant is given by

Cn
rr =

π0
r+2π0

− π2
r+2π2

[ r+2π1+2π2
r+π1+2π2

]p∗N

(1− p∗N)[Λ(p)]
r

π1+2π2

.

For p ≤ p∗N , both players get a payoff of vs = π0
r+2π0

. We now establish that the

conjectured equilibrium is indeed an equilibrium through the following proposition.

Proposition 2 A threshold π∗1 > 0 exists such that if π1 < π∗1, the conjectured equi-

librium is indeed an equilibrium.

Proof.

We can establish a π∗11 > 0 exists such that for all π1 < π∗11 , the payoff for each

player is increasing and convex for p > p∗N . Please refer to Appendix (C) for a

detailed proof.

Next, for each p > p∗N , from (3), we can infer that no player has any incentive to

unilaterally deviate if p(π1 +π2){( π2
π1+π2

+ π1
π1+π2

π2
r+2π2

)−vi−v
′
i(1−p)}−π0(1−vi) ≥ 0.

Because for p > p∗N both ki = kj = 1, the implication is that

[r + π0 +
π0π2

(π1 + π2)
]vi ≥ π0 +

π0π2

(π1 + π2)
− π2

2(r + π1 + 2π2)p

(π1 + π2)(r + 2π2)

⇒ vi ≥
π0 + π0π2

(π1+π2)
− π2

2(r+π1+2π2)p

(π1+π2)(r+2π2)

[r + π0 + π0π2
(π1+π2)

]
. (6)

The R.H.S. of (6) evaluated at p = π0
π2

is equal to
π0− π1π2π0

(π1+π2)(r+2π2)

[r+π0+
π0π2

(π1+π2)
]
.

Because π2 > π0, we have

π0

r + 2π0

−
[π0 − π1π2π0

(π1+π2)(r+2π2)

[r + π0 + π0π2
(π1+π2)

]

]
=

rπ1π0
(π1+π2)(r+2π2)

(π2 − π0)

(r + 2π0)[r + π0 + π0π2
(π1+π2)

]
> 0. (7)

We know vi(p
∗N) = π0

r+2π0
. At p = π0

π2
, for any π1 > 0, we have

π0

r + 2π0

>
π0 + π0π2

(π1+π2)
− π2

2(r+π1+2π2)p

(π1+π2)(r+2π2)

[r + π0 + π0π2
(π1+π2)

]
.

As π1 → 0, p∗N ↑ π0
π2

. Therefore, a π∗21 > 0, such that for all π1 < π∗21 , we have

vi(p
∗N) =

π0

r + 2π0

≥
π0 + π0π2

(π1+π2)
− π2

2(r+π1+2π2)p∗N

(π1+π2)(r+2π2)

[r + π0 + π0π2
(π1+π2)

]
. (8)
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Define π∗1 = min{π∗11 , π
∗2
1 }. For any π1 < π∗1, we have vi to be strictly convex and

increasing for all p > p∗N and condition (8) also holds. Because the R.H.S. of (6)

is decreasing in p, we can infer that for all p > p∗N , (6) holds. This shows that no

player has any incentive to deviate for any p > p∗N . Consider p ≤ p∗N . We need

to show that, conditional on no arrival, if the opponent (player j) chooses the safe

arm, doing so constitutes a best response for player i. On the equilibrium path,

for this range of beliefs, vi = π0
r+2π0

. Player i is playing a best response as long as

p(π1 + π2){( π2
π1+π2

+ π1
π1+π2

π2
r+2π2

) − vi − v
′
i(1 − p)} − π0(1 − vi) ≤ 0. From direct

computation, it can be seen that this is satisfied for p ≤ p∗N . Finally, given the way

p∗N is calculated, it follows that for p ≤ p∗N , player i will have no incentive to deceive

the opponent by experimenting a little longer.

This concludes the proof that the conjectured equilibrium is indeed an equilibrium

if π1 is lower than a threshold.

The above result can be interpreted intuitively. The equilibrium we construct in-

volves both players playing a threshold-type strategy. In our model, we have private

learning along the risky arm, which reveals the risky arm is good. In the equilibrium

constructed, on the equilibrium path, any private signal received by a player is com-

municated to the other player through his equilibrium action. Therefore, a player can

reap the benefit of an arrival his competitor experiences. This fact implicitly brings

in an aspect of free-riding. Thus, although our setting is competitive, it contains an

aspect of implicit free-riding. From the existing literature, we know that in a model

of strategic experimentation, free-riding is a hindrance to the existence of an equilib-

rium in which both players use threshold-type strategies. In the current model, the

higher the value of π1, the higher the implicit free-riding effect. This explains why we

require the intensity of the arrival of private information to be less than a threshold

for the constructed equilibrium to exist.

3.2 Inefficiency in Equilibrium

In this subsection, we discuss the possible distortions that might arise in the equilib-

rium constructed compared to the benchmark case. We begin this subsection by ob-

serving that p∗ < p∗N . However, because of private learning, we cannot infer whether

we have too much or too little experimentation in the non-cooperative equilibrium

solely by comparing the threshold probabilities of switching (p∗ in the planner’s case

16



and p∗N in the non-cooperative case). The reason is that in the non-cooperative

equilibrium, the beliefs are private (although the same across individuals), and in the

benchmark case, it is public. In the non-cooperative equilibrium, the informational

arrival along the good risky arm is only privately observable, and hence if the prior is

greater than p∗N , the same action profile will give rise to a different system of beliefs.

In the current paper, we determine the nature of inefficiency in the following manner.

For each prior, we first determine the duration of experimentation, conditional on

no arrival for both the benchmark case and the non-cooperative equilibrium. Then, we

say too much (too little) experimentation occurs in the non-cooperative equilibrium

if, starting from a prior, conditional on no arrival, the duration of experimentation is

higher (lower) in the non-cooperative equilibrium.

The following proposition describes the nature of inefficiency in the non-cooperative

equilibrium.

Proposition 3 The non-cooperative equilibrium involves inefficiency. A p∗0 ∈ (p∗N , 1)

exists such that if the prior p0 > p∗0, then, conditional on no arrival, we have too

much experimentation, and for p0 < p∗0, we have too little experimentation. By too

much (too-little) experimentation, we mean that starting from a prior, the duration

for which players operate along the risky arm is higher (lower) than the duration a

planner would have liked.

Proof. Let tnp0 be the duration of experimentation by the firms in the non-cooperative

equilibrium described above when they start from the prior p0. From the description

of the equilibrium, we know that if the firms start out from the prior p0, then they

will keep experimenting until the posterior reaches p∗N . Thus, we have

tnp0 = − 1

(π1 + 2π2)

∫ p∗N

p0

[
1

pt
+

1

(1− pt)
] dpt.

The dynamics of the posterior in equilibrium is

dpt = −(π1 + 2π2)pt(1− pt) dt⇒ dt = − 1

(π1 + 2π2)

1

pt(1− pt)
dpt,

which implies we have

tnp0 =
1

(π1 + 2π2)
[log[Λ(p∗N)]− log[Λ(p0)]]. (9)
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Let tpp0 be the duration of experimentation a planner would have wanted if the

firms started out from the prior p0. Then, from the equation of motion of pt in the

planner’s problem, we have

dpt = −2(π1 + π2)pt(1− pt) dt⇒ dt = − 1

2(π1 + π2)

1

pt(1− pt)
dt,

which gives us

tpp0 =
1

(2π1 + 2π2)
[log[Λ(p∗)]− log[Λ(p0)]]. (10)

From 9 and 10, we can infer that excessive experimentation occurs if tnp0 > tpp0 ,

which happens when

1

(π1 + 2π2)
[log[Λ(p∗N)]− log[Λ(p0)]] >

1

(2π1 + 2π2)
[log[Λ(p∗)]− log[Λ(p0)]]

⇒ π1 log[Λ(p0)] < 2(π1 + π2) log[Λ(p∗N)]− (π1 + 2π2) log[Λ(p∗)].

Let π1 log[Λ(p0)] ≡ τ(p). Because logarithm is a monotonically increasing function

and Λ(p) is monotonically decreasing in p, τ(p) is monotonically decreasing in p.

First, observe that at τ(1) = −∞.

The R.H.S. can be written as

π1 log[Λ(p∗N)]− (π1 + 2π2)[log[Λ(p∗)]− log[Λ(p∗N)]]

. Because [log[Λ(p∗)]− log[Λ(p∗N)]] > 0, we have

R.H.S. < π1 log[Λ(p∗N)] = τ(p∗N).

Because p∗N ∈ (0, 1) and log[Λ(p∗)] is finite, we have the R.H.S. satisfying

2(π1+π2) log[Λ(p∗N)]−(π1+2π2) log[Λ(p∗)] > 2(π1+π2) log[Λ(1)]−(π1+2π2) log[Λ(p∗)] = −∞.

Thus, we have

τ(1) < R.H.S. and τ(p∗N) > R.H.S.

Hence, ∃ a p∗0 ∈ (p∗N , 1) such that for p0 > p∗0, τ(p0) < R.H.S. and for p0 < p∗0,

τ(p0) > R.H.S. Hence, if the prior exceeds p∗0, too much experimentation occurs, and
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if it is below the threshold, too little experimentation occurs in the non-cooperative

equilibrium.

This concludes the proof of this proposition

In the non-cooperative equilibrium, distortion arises from two sources. First is

what we call the implicit free-riding effect. This effect comes from the fact that if a

player experiences a private arrival of information, the competing player also reaps

the benefit. This scenario is possible here because we construct the equilibrium when

the inertia goes to zero. In fact, if information arrival to firms were public, the non-

cooperative equilibrium would always involve free-riding. This follows directly from

(Keller, Rady and Cripps (2005)). Thus, this implicit free-riding effect tends to

reduce the duration of experimentation.

The other kind of distortion arises from the fact that information arrival is pri-

vate, and while the players are experimenting, the probability that the opponent

has experienced a private arrival is directly proportional to the belief that the risky

arm is good. Conditional on no observation, this makes the movement of the belief

sluggish, resulting in an increase in the duration of experimentation. The effect of

distortion from the second (first) source dominates if the common prior to start with

is higher(lower). This intuitively explains the result of the above proposition.

4 Conclusion

This paper analysed a tractable model to explore the situation in which private arrival

of information as well as public arrival of final invention can occur. We show a non-

cooperative equilibrium can exist where, depending on the prior, both too much

and too little experimentation can take place. The equilibrium is derived under the

assumption that the inertia of players’ action goes to zero. How the results change

if a player, after switching to the safe arm, is unable to revert back to the risky arm

immediately (fixed positive inertia) would be interesting to see. In addition, once

we introduce the payoff from revealing informational arrival, situations might exist

in which a player would have the incentive to reveal a private observation. I plan to

address these issues in my future research.
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Appendix

A Ordinary Differential Equations

A.1 ODE for planner’s problem

When both firms are made to experiment, the planner’s value function satisfies the

following ODE:

2(π1+π2)p(1−p)v′+[r+2(π1+π2)p]v = 2(π1+π2)p[
π2

π1 + π2

+
π1

π1 + π2

2π2

r + 2π2

]. (11)

This ODE is solved by

v(p) =
2π2

r + 2π2

p+ Cu0(p). (12)

B Proof of proposition 1

The planner’s payoff satisfies the value-matching condition at p = p∗. From the

relevant ODE (see equation 11 in Appendix A), we can conclude that v
′
(p∗) = 0.

Because [ 2π0
r+2π0

− 2π2
r+2π2

p∗] > 0, from 12, we can infer that for all p > p∗, v is strictly

increasing. From the conjectured solution and the ODE 11, it follows that for p > p∗,

[(π1 + π2)p{ π2
π1+π2

+ π1
π1+π2

2π2
r+2π2

− v − (1 − p)v′}] = rv
2

. At p = p∗, rv
2

= π0(1 − v).

Because v is strictly increasing for p > p∗, we have [(π1 + π2)p{ π2
π1+π2

+ π1
π1+π2

2π2
r+2π2

−
v − (1 − p)v

′}] > π0(1 − v). On the other hand, for p ≤ p∗, we have v
′

= 0, and

thus [(π1 +π2)p{ π2
π1+π2

+ π1
π1+π2

2π2
r+2π2

− v− (1− p)v′}] ≤ π0(1− v). Thus, the proposed

policy satisfies the Bellman equation 1.

C

First, we show convexity. From (5), we know vi is convex if Cn
rr > 0. Cn

rr is obtained

from the value-matching condition at p∗N , which implies

Cn
rr =

π0
r+2π0

− π2
r+2π2

[1 + π1
r+π1+2π2

]p∗N

(1− p∗N)[Λ(p∗N)
r

π1+2π2

.
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As π1 → 0, p∗N → π0
π2

and π2
r+2π2

[1+ π1
r+π1+2π2

]→ π2
r+2π2

. Hence, Cn
rr →

π0
r+2π0

− π2
r+2π2

p∗N

(1−p∗N )[Λ(p∗N )
r

π1+2π2
>

0. From this, we can infer a π∗11 > 0 exists such that for all π1 < π∗11 , Cn
rr > 0.

Next, we show v
′
i(p
∗N) > 0 as long as p∗N > π0

π2+
π1

r+2π2
[2π2−π0]+

2π0π1π2
(r+2π2)r

.

Suppose both players are experimenting when p > p̄. Hence, v1 will be given by

(5), and we have

v
′

1 =
π2(r + 2π1 + 2π2)

(r + 2π2)(r + π1 + 2π2)
− Cn

rr[Λ(p)]
r

π1+2π2 [1 +
r

π1 + 2π2

1

p
].

Substituting the value of Cn
rr, we have

v
′

1 =
π2

r + 2π2

[
r + 2π1 + 2π2

r + π1 + 2π2

]− [
π0

r+2π0
− π2

r+2π2
[ r+2π1+2π2
r+π1+2π2

]p̄

(1− p̄)
][1 +

r

π1 + 2π2

1

p̄
]

=

π2
r+2π2

[ r+2π1+2π2
r+π1+2π2

](1− p̄)− [ π0
r+2π0

− π2
r+2π2

[ r+2π1+2π2
r+π1+2π2

]p̄][1 + r
π1+2π2

1
p̄
]

(1− p̄)
.

The numerator of the above term is

π2(r + 2π1 + 2π2)

(r + 2π2)(r + π1 + 2π2)
(1− p̄)− π0

r + 2π0

+
π2(r + 2π1 + 2π2)

(r + 2π2)(r + π1 + 2π2)
p̄

− π0r

(r + 2π0)(π1 + 2π2)

1

p̄
+

π2(r + 2π1 + 2π2)

(r + 2π2)(r + π1 + 2π2)

r

(π1 + 2π2)

=
π2(r + 2π1 + 2π2)

(r + 2π2)(π1 + 2π2)
− π0

(r + 2π0)
[
r + (π1 + 2π2)p̄

(π1 + 2π2)p̄
].

v
′
1(p̄) is positive if

π2(r + 2π1 + 2π2)

(r + 2π2)(π1 + 2π2)
− π0

(r + 2π0)
[
r + (π1 + 2π2)p̄

(π1 + 2π2)p̄
] > 0

⇒ p̄[
π2(r + 2π1 + 2π2)

(r + 2π2)
− π0

r + 2π0

(π1 + 2π2)] >
rπ0

(r + 2π0)

⇒ p̄[
π2(r + 2π1 + 2π2)(r + 2π0)− π0(π1 + 2π2)(r + 2π2)

(r + 2π2)(r + 2π0)
] >

rπ0

(r + 2π0)

⇒ p̄[
rπ2(r + 2π2) + rπ1(2π2 − π0) + 2π0π1π2

(r + 2π2)
] > rπ0
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⇒ p̄ >
π0

π2 + π1
r+2π2

[2π2 − π0] + 2π0π1π2
(r+2π2)r

≡ p
′
.

Because p∗N > p
′
, we have v

′
i to be strictly positive for all p > p∗N . This concludes

the proof.
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